不同来源油脂的热解-气相色谱/质谱分析

Q. Qiu, Yiting Zhang
{"title":"不同来源油脂的热解-气相色谱/质谱分析","authors":"Q. Qiu, Yiting Zhang","doi":"10.17737/TRE.2021.7.1.00127","DOIUrl":null,"url":null,"abstract":"Regenerated gutter oil (i.e., waste oil) accounts for 10% of the edible oil market, which has caused serious food safety issues. Currently, there is no standard protocol for the identification of the gutter oil. In this study, the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was employed to analyze eleven oil samples including edible vegetable oils (tea oil, corn oil, olive oil, sunflower oil, peanut oil and blend vegetable oil) and waste oils (used frying oil, lard, chicken fat, inferior oil and kitchen waste grease). Three factors of pyrolysis temperature, reaction time and sample volume were investigated to optimize the analytical parameters. The optimal pyrolysis conditions were determined to be 600°C, 1 min and an injection volume of 0.3 μL. Five characteristic components (tetradecane, z,z-9,12-octadecadienoic acid, decanoic acid-2-propenyl ester, 17-octadecenoic acid, and z-9-octadecenoic acid) were found in all oil samples. The existence of C11-C16 olefins in the pyrolytic products of the animal fats and the other low-quality oils could be utilized to distinguish vegetable oils from gutter oils.","PeriodicalId":23305,"journal":{"name":"Trends in Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Oils from Different Sources\",\"authors\":\"Q. Qiu, Yiting Zhang\",\"doi\":\"10.17737/TRE.2021.7.1.00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regenerated gutter oil (i.e., waste oil) accounts for 10% of the edible oil market, which has caused serious food safety issues. Currently, there is no standard protocol for the identification of the gutter oil. In this study, the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was employed to analyze eleven oil samples including edible vegetable oils (tea oil, corn oil, olive oil, sunflower oil, peanut oil and blend vegetable oil) and waste oils (used frying oil, lard, chicken fat, inferior oil and kitchen waste grease). Three factors of pyrolysis temperature, reaction time and sample volume were investigated to optimize the analytical parameters. The optimal pyrolysis conditions were determined to be 600°C, 1 min and an injection volume of 0.3 μL. Five characteristic components (tetradecane, z,z-9,12-octadecadienoic acid, decanoic acid-2-propenyl ester, 17-octadecenoic acid, and z-9-octadecenoic acid) were found in all oil samples. The existence of C11-C16 olefins in the pyrolytic products of the animal fats and the other low-quality oils could be utilized to distinguish vegetable oils from gutter oils.\",\"PeriodicalId\":23305,\"journal\":{\"name\":\"Trends in Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17737/TRE.2021.7.1.00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17737/TRE.2021.7.1.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

再生地沟油(即废油)占食用油市场的10%,造成了严重的食品安全问题。目前,地沟油的鉴别还没有标准的规程。本研究采用热解-气相色谱/质谱(pygc /MS)方法对11种油类样品进行了分析,包括食用植物油(茶油、玉米油、橄榄油、葵花籽油、花生油和混合植物油)和废油(用过的煎炸油、猪油、鸡油、劣质油和厨余油脂)。考察了热解温度、反应时间和样品体积三个因素对分析参数的影响。最佳热解条件为600℃、1 min、进样量0.3 μL。在所有油样品中均发现了五种特征成分(十四烷、z、z-9、12-十八烯二酸、癸酸-2-丙烯酯、17-十八烯酸和z-9-十八烯酸)。动物脂肪和其他劣质油脂的热解产物中存在C11-C16烯烃,可用于区分植物油和地沟油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Oils from Different Sources
Regenerated gutter oil (i.e., waste oil) accounts for 10% of the edible oil market, which has caused serious food safety issues. Currently, there is no standard protocol for the identification of the gutter oil. In this study, the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was employed to analyze eleven oil samples including edible vegetable oils (tea oil, corn oil, olive oil, sunflower oil, peanut oil and blend vegetable oil) and waste oils (used frying oil, lard, chicken fat, inferior oil and kitchen waste grease). Three factors of pyrolysis temperature, reaction time and sample volume were investigated to optimize the analytical parameters. The optimal pyrolysis conditions were determined to be 600°C, 1 min and an injection volume of 0.3 μL. Five characteristic components (tetradecane, z,z-9,12-octadecadienoic acid, decanoic acid-2-propenyl ester, 17-octadecenoic acid, and z-9-octadecenoic acid) were found in all oil samples. The existence of C11-C16 olefins in the pyrolytic products of the animal fats and the other low-quality oils could be utilized to distinguish vegetable oils from gutter oils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized Lightweight Frame for Intelligent New-energy Vehicles Temperature Forecasting as a Means of Mitigating Climate Change and Its Effects: A Case Study of Mali Research Progress of Nanofluid Heat Pipes in Automotive Lithium-ion Battery Heat Management Technology A Review of Low Temperature Combustion Mode of Engine Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1