高光谱图像有损压缩算法的计算复杂度优化

L. Lebedev, A. O. Shakhlan
{"title":"高光谱图像有损压缩算法的计算复杂度优化","authors":"L. Lebedev, A. O. Shakhlan","doi":"10.18287/1613-0073-2019-2391-297-301","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the solution of the problem of increasing the speed of the algorithm for hyperspectral images (HSI) compression, based on recognition methods. Two methods are proposed to reduce the computational complexity of a lossy compression algorithm. The first method is based on the use of compression results obtained with other parameters, including those of the recognition method. The second method is based on adaptive partitioning of hyperspectral image pixels into clusters and calculating the estimates of similarity only with the templates of one of the subsets. Theoretical and practical estimates of the increase in the speed of the compression algorithm are obtained.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of computational complexity of lossy compression algorithms for hyperspectral images\",\"authors\":\"L. Lebedev, A. O. Shakhlan\",\"doi\":\"10.18287/1613-0073-2019-2391-297-301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the solution of the problem of increasing the speed of the algorithm for hyperspectral images (HSI) compression, based on recognition methods. Two methods are proposed to reduce the computational complexity of a lossy compression algorithm. The first method is based on the use of compression results obtained with other parameters, including those of the recognition method. The second method is based on adaptive partitioning of hyperspectral image pixels into clusters and calculating the estimates of similarity only with the templates of one of the subsets. Theoretical and practical estimates of the increase in the speed of the compression algorithm are obtained.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-297-301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-297-301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了在识别方法的基础上提高高光谱图像(HSI)压缩算法速度的问题。提出了两种降低有损压缩算法计算复杂度的方法。第一种方法是基于使用其他参数获得的压缩结果,包括识别方法的压缩结果。第二种方法是基于高光谱图像像素的自适应分割成簇,并仅使用其中一个子集的模板计算相似性估计。得到了压缩算法速度提高的理论和实际估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of computational complexity of lossy compression algorithms for hyperspectral images
In this paper, we consider the solution of the problem of increasing the speed of the algorithm for hyperspectral images (HSI) compression, based on recognition methods. Two methods are proposed to reduce the computational complexity of a lossy compression algorithm. The first method is based on the use of compression results obtained with other parameters, including those of the recognition method. The second method is based on adaptive partitioning of hyperspectral image pixels into clusters and calculating the estimates of similarity only with the templates of one of the subsets. Theoretical and practical estimates of the increase in the speed of the compression algorithm are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1