设计基于神经科学理论的空间滤波器以改进与错误相关的潜在分类

S. Rousseau, C. Jutten, M. Congedo
{"title":"设计基于神经科学理论的空间滤波器以改进与错误相关的潜在分类","authors":"S. Rousseau, C. Jutten, M. Congedo","doi":"10.1109/MLSP.2012.6349740","DOIUrl":null,"url":null,"abstract":"In this paper we present an experiment enabling the occurrence of the error-related potential in high cognitive load conditions. We study the single-trial classification of the errorrelated potential and show that classification results can be improved using specific spatial filters designed with the aid of neurophysiological theories on the error-related potential.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Designing spatial filters based on neuroscience theories to improve error-related potential classification\",\"authors\":\"S. Rousseau, C. Jutten, M. Congedo\",\"doi\":\"10.1109/MLSP.2012.6349740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an experiment enabling the occurrence of the error-related potential in high cognitive load conditions. We study the single-trial classification of the errorrelated potential and show that classification results can be improved using specific spatial filters designed with the aid of neurophysiological theories on the error-related potential.\",\"PeriodicalId\":73290,\"journal\":{\"name\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个实验,使错误相关电位在高认知负荷条件下发生。本文研究了误差相关电位的单次分类方法,并证明了基于误差相关电位的神经生理学理论设计的特定空间滤波器可以改善分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing spatial filters based on neuroscience theories to improve error-related potential classification
In this paper we present an experiment enabling the occurrence of the error-related potential in high cognitive load conditions. We study the single-trial classification of the errorrelated potential and show that classification results can be improved using specific spatial filters designed with the aid of neurophysiological theories on the error-related potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS. CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES. LEARNING GENERAL TRANSFORMATIONS OF DATA FOR OUT-OF-SAMPLE EXTENSIONS. Statistical modelling and inference Probabilistic graphical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1