在软件中容忍硬件设备故障

Asim Kadav, Matthew J. Renzelmann, M. Swift
{"title":"在软件中容忍硬件设备故障","authors":"Asim Kadav, Matthew J. Renzelmann, M. Swift","doi":"10.1145/1629575.1629582","DOIUrl":null,"url":null,"abstract":"Hardware devices can fail, but many drivers assume they do not. When confronted with real devices that misbehave, these assumptions can lead to driver or system failures. While major operating system and device vendors recommend that drivers detect and recover from hardware failures, we find that there are many drivers that will crash or hang when a device fails. Such bugs cannot easily be detected by regular stress testing because the failures are induced by the device and not the software load. This paper describes Carburizer, a code-manipulation tool and associated runtime that improves system reliability in the presence of faulty devices. Carburizer analyzes driver source code to find locations where the driver incorrectly trusts the hardware to behave. Carburizer identified almost 1000 such bugs in Linux drivers with a false positive rate of less than 8 percent. With the aid of shadow drivers for recovery, Carburizer can automatically repair 840 of these bugs with no programmer involvement. To facilitate proactive management of device failures, Carburizer can also locate existing driver code that detects device failures and inserts missing failure-reporting code. Finally, the Carburizer runtime can detect and tolerate interrupt-related bugs, such as stuck or missing interrupts.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"3 1","pages":"59-72"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Tolerating hardware device failures in software\",\"authors\":\"Asim Kadav, Matthew J. Renzelmann, M. Swift\",\"doi\":\"10.1145/1629575.1629582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware devices can fail, but many drivers assume they do not. When confronted with real devices that misbehave, these assumptions can lead to driver or system failures. While major operating system and device vendors recommend that drivers detect and recover from hardware failures, we find that there are many drivers that will crash or hang when a device fails. Such bugs cannot easily be detected by regular stress testing because the failures are induced by the device and not the software load. This paper describes Carburizer, a code-manipulation tool and associated runtime that improves system reliability in the presence of faulty devices. Carburizer analyzes driver source code to find locations where the driver incorrectly trusts the hardware to behave. Carburizer identified almost 1000 such bugs in Linux drivers with a false positive rate of less than 8 percent. With the aid of shadow drivers for recovery, Carburizer can automatically repair 840 of these bugs with no programmer involvement. To facilitate proactive management of device failures, Carburizer can also locate existing driver code that detects device failures and inserts missing failure-reporting code. Finally, the Carburizer runtime can detect and tolerate interrupt-related bugs, such as stuck or missing interrupts.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"3 1\",\"pages\":\"59-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629575.1629582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629575.1629582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

摘要

硬件设备可能会出现故障,但许多驱动程序认为它们不会。当面对行为不正常的真实设备时,这些假设可能导致驱动程序或系统故障。虽然主要的操作系统和设备供应商建议驱动程序检测并从硬件故障中恢复,但我们发现,当设备故障时,有许多驱动程序会崩溃或挂起。常规的压力测试很难检测到这些漏洞,因为故障是由设备引起的,而不是由软件负载引起的。本文介绍了Carburizer,一个代码操作工具和相关的运行时,以提高系统的可靠性,在存在故障的设备。Carburizer分析驱动程序源代码,以找到驱动程序不正确地信任硬件行为的位置。Carburizer在Linux驱动程序中发现了近1000个这样的错误,误报率低于8%。借助影子驱动程序的恢复,Carburizer可以自动修复840这些错误,而无需程序员的参与。为了便于主动管理设备故障,Carburizer还可以定位检测设备故障的现有驱动程序代码,并插入缺失的故障报告代码。最后,Carburizer运行时可以检测和容忍中断相关的错误,例如卡住或丢失中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tolerating hardware device failures in software
Hardware devices can fail, but many drivers assume they do not. When confronted with real devices that misbehave, these assumptions can lead to driver or system failures. While major operating system and device vendors recommend that drivers detect and recover from hardware failures, we find that there are many drivers that will crash or hang when a device fails. Such bugs cannot easily be detected by regular stress testing because the failures are induced by the device and not the software load. This paper describes Carburizer, a code-manipulation tool and associated runtime that improves system reliability in the presence of faulty devices. Carburizer analyzes driver source code to find locations where the driver incorrectly trusts the hardware to behave. Carburizer identified almost 1000 such bugs in Linux drivers with a false positive rate of less than 8 percent. With the aid of shadow drivers for recovery, Carburizer can automatically repair 840 of these bugs with no programmer involvement. To facilitate proactive management of device failures, Carburizer can also locate existing driver code that detects device failures and inserts missing failure-reporting code. Finally, the Carburizer runtime can detect and tolerate interrupt-related bugs, such as stuck or missing interrupts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ResilientFL '21: Proceedings of the First Workshop on Systems Challenges in Reliable and Secure Federated Learning, Virtual Event / Koblenz, Germany, 25 October 2021 SOSP '21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021 Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Efficient deterministic multithreading through schedule relaxation SILT: a memory-efficient, high-performance key-value store
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1