基于部分订单计划技术的制造系统控制序列自动生成

L Castillo, J Fdez-Olivares, A González
{"title":"基于部分订单计划技术的制造系统控制序列自动生成","authors":"L Castillo,&nbsp;J Fdez-Olivares,&nbsp;A González","doi":"10.1016/S0954-1810(99)00025-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents an approach for the application of artificial intelligence planning techniques to the automatic generation of control sequences for manufacturing systems. These systems have some special features that must be considered in the planning process, but there are difficulties when the usual models of action are used to deal with these features. In this work, a specialized interval-based model of action is defined by extending the classic model of <span>strips</span> giving it more expressiveness so that it is able to deal with these features. In consequence, a specialized planning algorithm for this model of action, called <span>machine</span>, is defined based on a general partial order planning scheme, and it is able to obtain control sequences for manufacturing systems. These control sequences are actually the control program skeleton and may be easily translated into real control programs expressed as GRAFCET charts.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"14 1","pages":"Pages 15-30"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00025-4","citationCount":"15","resultStr":"{\"title\":\"Automatic generation of control sequences for manufacturing systems based on partial order planning techniques\",\"authors\":\"L Castillo,&nbsp;J Fdez-Olivares,&nbsp;A González\",\"doi\":\"10.1016/S0954-1810(99)00025-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents an approach for the application of artificial intelligence planning techniques to the automatic generation of control sequences for manufacturing systems. These systems have some special features that must be considered in the planning process, but there are difficulties when the usual models of action are used to deal with these features. In this work, a specialized interval-based model of action is defined by extending the classic model of <span>strips</span> giving it more expressiveness so that it is able to deal with these features. In consequence, a specialized planning algorithm for this model of action, called <span>machine</span>, is defined based on a general partial order planning scheme, and it is able to obtain control sequences for manufacturing systems. These control sequences are actually the control program skeleton and may be easily translated into real control programs expressed as GRAFCET charts.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":\"14 1\",\"pages\":\"Pages 15-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00025-4\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181099000254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181099000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种将人工智能规划技术应用于制造系统控制序列自动生成的方法。这些系统有一些在规划过程中必须考虑的特殊特征,但是当使用通常的行动模型来处理这些特征时,就会遇到困难。在这项工作中,通过扩展经典的条带模型来定义一个专门的基于间隔的动作模型,使其更具表现力,从而能够处理这些特征。因此,在一般的偏序规划方案的基础上,定义了一种针对该动作模型的专用规划算法,即机器,该算法能够获得制造系统的控制序列。这些控制序列实际上是控制程序的骨架,可以很容易地转换成用GRAFCET图表示的实际控制程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic generation of control sequences for manufacturing systems based on partial order planning techniques

This work presents an approach for the application of artificial intelligence planning techniques to the automatic generation of control sequences for manufacturing systems. These systems have some special features that must be considered in the planning process, but there are difficulties when the usual models of action are used to deal with these features. In this work, a specialized interval-based model of action is defined by extending the classic model of strips giving it more expressiveness so that it is able to deal with these features. In consequence, a specialized planning algorithm for this model of action, called machine, is defined based on a general partial order planning scheme, and it is able to obtain control sequences for manufacturing systems. These control sequences are actually the control program skeleton and may be easily translated into real control programs expressed as GRAFCET charts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Contents Simulating behaviors of human situation awareness under high workloads Emergent synthesis of motion patterns for locomotion robots Synthesis and emergence — research overview Concept of self-reconfigurable modular robotic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1