o-BC2N中准粒子和激子效应的第一性原理研究:GW + BSE研究

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Advances in Condensed Matter Physics Pub Date : 2023-01-30 DOI:10.1155/2023/7808434
Genene Shiferaw Aga, Pooran Singh, Chernet Amente Geffe
{"title":"o-BC2N中准粒子和激子效应的第一性原理研究:GW + BSE研究","authors":"Genene Shiferaw Aga, Pooran Singh, Chernet Amente Geffe","doi":"10.1155/2023/7808434","DOIUrl":null,"url":null,"abstract":"Ternary boron-carbon-nitride compounds are the hardest, chemically stable, and most applicable semiconductors in optoelectronic devices. We investigate the quasi-particle and excitonic properties of type II o-BC2N using many-body perturbation theory (MBPT). The state-of-the-art GW and BSE methods were used to determine the accurate band gap and excited-state characteristics of this material. We simulate the convergence test and structural optimization in DFT, which is the starting point for the GW calculation. We also compute the convergence test of the parameters in GW and BSE. As a result, the bandgap of our system is found to be 2.31 eV and 1.95 eV using the GW approximation and DFT-PBE, respectively. Since the valence and conduction band edges are located at different Brillouin zones, we decide that o-BC2N is an indirect bandgap semiconductor. In addition, by applying the scissor operator, we corrected the quasi-particle bandgap, which shows almost the same result as the GW approximation. Furthermore, using the BSE algorithm, we calculate the optical bandgap of type II o-BC2N to be 4.0 eV with the excitonic effect and 4.4 eV without the excitonic effect. The highest peaks of the imaginary dielectric function with the excitonic effect shift to a lower energy level at 11 eV than without the excitonic effect at 13.5 eV. The electron charge distribution is computed by fixing the hole position. Finally, we suggest that type II o-BC2N is promising for the application of optoelectronic semiconductors.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"3 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First-Principles Study of the Quasi-Particle and Excitonic Effect in o-BC2N: The GW + BSE Study\",\"authors\":\"Genene Shiferaw Aga, Pooran Singh, Chernet Amente Geffe\",\"doi\":\"10.1155/2023/7808434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ternary boron-carbon-nitride compounds are the hardest, chemically stable, and most applicable semiconductors in optoelectronic devices. We investigate the quasi-particle and excitonic properties of type II o-BC2N using many-body perturbation theory (MBPT). The state-of-the-art GW and BSE methods were used to determine the accurate band gap and excited-state characteristics of this material. We simulate the convergence test and structural optimization in DFT, which is the starting point for the GW calculation. We also compute the convergence test of the parameters in GW and BSE. As a result, the bandgap of our system is found to be 2.31 eV and 1.95 eV using the GW approximation and DFT-PBE, respectively. Since the valence and conduction band edges are located at different Brillouin zones, we decide that o-BC2N is an indirect bandgap semiconductor. In addition, by applying the scissor operator, we corrected the quasi-particle bandgap, which shows almost the same result as the GW approximation. Furthermore, using the BSE algorithm, we calculate the optical bandgap of type II o-BC2N to be 4.0 eV with the excitonic effect and 4.4 eV without the excitonic effect. The highest peaks of the imaginary dielectric function with the excitonic effect shift to a lower energy level at 11 eV than without the excitonic effect at 13.5 eV. The electron charge distribution is computed by fixing the hole position. Finally, we suggest that type II o-BC2N is promising for the application of optoelectronic semiconductors.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7808434\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/7808434","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1

摘要

硼碳氮三元化合物是最坚硬、化学稳定、最适用于光电子器件的半导体。利用多体微扰理论(MBPT)研究了II型o-BC2N的准粒子和激子性质。使用最先进的GW和BSE方法来确定该材料的精确带隙和激发态特性。我们在DFT中模拟了收敛性测试和结构优化,这是GW计算的起点。我们还计算了GW和BSE中参数的收敛性检验。结果表明,采用GW近似和DFT-PBE计算得到的带隙分别为2.31 eV和1.95 eV。由于价带和导带边缘位于不同的布里渊区,我们决定o-BC2N是间接带隙半导体。此外,利用剪刀算子对准粒子带隙进行了修正,结果与GW近似结果基本一致。此外,利用BSE算法,我们计算出II型o-BC2N的光带隙在有激子效应的情况下为4.0 eV,在没有激子效应的情况下为4.4 eV。有激子效应的虚介电函数峰值在11ev时比无激子效应时在13.5 eV时移至更低的能级。通过固定空穴位置计算电子电荷分布。最后,我们认为II型o-BC2N在光电半导体领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-Principles Study of the Quasi-Particle and Excitonic Effect in o-BC2N: The GW + BSE Study
Ternary boron-carbon-nitride compounds are the hardest, chemically stable, and most applicable semiconductors in optoelectronic devices. We investigate the quasi-particle and excitonic properties of type II o-BC2N using many-body perturbation theory (MBPT). The state-of-the-art GW and BSE methods were used to determine the accurate band gap and excited-state characteristics of this material. We simulate the convergence test and structural optimization in DFT, which is the starting point for the GW calculation. We also compute the convergence test of the parameters in GW and BSE. As a result, the bandgap of our system is found to be 2.31 eV and 1.95 eV using the GW approximation and DFT-PBE, respectively. Since the valence and conduction band edges are located at different Brillouin zones, we decide that o-BC2N is an indirect bandgap semiconductor. In addition, by applying the scissor operator, we corrected the quasi-particle bandgap, which shows almost the same result as the GW approximation. Furthermore, using the BSE algorithm, we calculate the optical bandgap of type II o-BC2N to be 4.0 eV with the excitonic effect and 4.4 eV without the excitonic effect. The highest peaks of the imaginary dielectric function with the excitonic effect shift to a lower energy level at 11 eV than without the excitonic effect at 13.5 eV. The electron charge distribution is computed by fixing the hole position. Finally, we suggest that type II o-BC2N is promising for the application of optoelectronic semiconductors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
期刊最新文献
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1