Xiumei Guan, Hong Li, Xin Li, Xiaoyun Zhang, Xiaodong Cui, Hong Yan, YuzhenWang, Shunmei Liu, Min Cheng
{"title":"自噬在剪应力诱导的内皮细胞分化中的作用","authors":"Xiumei Guan, Hong Li, Xin Li, Xiaoyun Zhang, Xiaodong Cui, Hong Yan, YuzhenWang, Shunmei Liu, Min Cheng","doi":"10.32604/MCB.2019.05755","DOIUrl":null,"url":null,"abstract":"Endothelial progenitor cells (EPCs) play an important role in postnatal angiogenesis and neovascularization. Previous studies have revealed shear stress could accelerate EPC proliferation, differentiation, migration and so on, which contribute to postnatal angiogenesis and neovascularization. Moreover, some studies indicate that autophagy actively participates angiogenesis by affecting EPC migration and differentiation. Here, we try to elucidate the possible roles of autophagy of EPC differentiation induced by shear stress. Methods and Results:EPCs were exposed to shear stress (12 dyne/cm2). And then the expression of autophagy markers, such as LC3Ⅱ/Ⅰ,P62andATG5, were analyzed using Western blot. The results have shown that in EPCs, shear stress triggered an increase in LC3Ⅱ/Ⅰ and ATG5 at 10 min, which was then followed by a decrease. In contrast, shear stress caused a decrease in P62 at 10 min, which was then followed by an increase. Furthermore, immunostaining revealed that the unsheared cells showed only weak LCⅡ staining. However, shear stress increased LCⅡ staining. Bafromycin experiment confirmed that the increase of autophagy caused by shear stress was due to an increase in the formation of autophagy rather than a decrease in the degradation of autophagosomes. To examine the role of autophagy in the shear stress-induced EPC differentiation, we pretreated late EPCs with 3-MA, an inhibitor of autophagy, before the application of shear stress. Through real time RT-PCR and FACS analyses, we observed that the pretreatment of EPCs with 3-MA significantly inhibited the shear stress induced up-regulation of vWF and CD31. In the mean time, treatment of EPCs with LY294002 (a small molecule inhibitor of PI3K) or KLF2 siRNA inhibited the shear stress-induced EPC autophagy and differentiation. Conclusion:Autophagy is involved in the shear stress-upregulated expression of endothelial markers vWF and CD31 in EPCs. Moreover, this increase was observed to be mediated by PI3K and KLF2. Although further studies are needed to confirm the relationship between these mechanosensitive molecules, the present results may provide new insights into the relationship between EPC autophagy and differentiation induced by shear stress.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Role of Autophagy in the Differentiation of EPCs Induced by Shear Stress\",\"authors\":\"Xiumei Guan, Hong Li, Xin Li, Xiaoyun Zhang, Xiaodong Cui, Hong Yan, YuzhenWang, Shunmei Liu, Min Cheng\",\"doi\":\"10.32604/MCB.2019.05755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endothelial progenitor cells (EPCs) play an important role in postnatal angiogenesis and neovascularization. Previous studies have revealed shear stress could accelerate EPC proliferation, differentiation, migration and so on, which contribute to postnatal angiogenesis and neovascularization. Moreover, some studies indicate that autophagy actively participates angiogenesis by affecting EPC migration and differentiation. Here, we try to elucidate the possible roles of autophagy of EPC differentiation induced by shear stress. Methods and Results:EPCs were exposed to shear stress (12 dyne/cm2). And then the expression of autophagy markers, such as LC3Ⅱ/Ⅰ,P62andATG5, were analyzed using Western blot. The results have shown that in EPCs, shear stress triggered an increase in LC3Ⅱ/Ⅰ and ATG5 at 10 min, which was then followed by a decrease. In contrast, shear stress caused a decrease in P62 at 10 min, which was then followed by an increase. Furthermore, immunostaining revealed that the unsheared cells showed only weak LCⅡ staining. However, shear stress increased LCⅡ staining. Bafromycin experiment confirmed that the increase of autophagy caused by shear stress was due to an increase in the formation of autophagy rather than a decrease in the degradation of autophagosomes. To examine the role of autophagy in the shear stress-induced EPC differentiation, we pretreated late EPCs with 3-MA, an inhibitor of autophagy, before the application of shear stress. Through real time RT-PCR and FACS analyses, we observed that the pretreatment of EPCs with 3-MA significantly inhibited the shear stress induced up-regulation of vWF and CD31. In the mean time, treatment of EPCs with LY294002 (a small molecule inhibitor of PI3K) or KLF2 siRNA inhibited the shear stress-induced EPC autophagy and differentiation. Conclusion:Autophagy is involved in the shear stress-upregulated expression of endothelial markers vWF and CD31 in EPCs. Moreover, this increase was observed to be mediated by PI3K and KLF2. Although further studies are needed to confirm the relationship between these mechanosensitive molecules, the present results may provide new insights into the relationship between EPC autophagy and differentiation induced by shear stress.\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/MCB.2019.05755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.05755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The Role of Autophagy in the Differentiation of EPCs Induced by Shear Stress
Endothelial progenitor cells (EPCs) play an important role in postnatal angiogenesis and neovascularization. Previous studies have revealed shear stress could accelerate EPC proliferation, differentiation, migration and so on, which contribute to postnatal angiogenesis and neovascularization. Moreover, some studies indicate that autophagy actively participates angiogenesis by affecting EPC migration and differentiation. Here, we try to elucidate the possible roles of autophagy of EPC differentiation induced by shear stress. Methods and Results:EPCs were exposed to shear stress (12 dyne/cm2). And then the expression of autophagy markers, such as LC3Ⅱ/Ⅰ,P62andATG5, were analyzed using Western blot. The results have shown that in EPCs, shear stress triggered an increase in LC3Ⅱ/Ⅰ and ATG5 at 10 min, which was then followed by a decrease. In contrast, shear stress caused a decrease in P62 at 10 min, which was then followed by an increase. Furthermore, immunostaining revealed that the unsheared cells showed only weak LCⅡ staining. However, shear stress increased LCⅡ staining. Bafromycin experiment confirmed that the increase of autophagy caused by shear stress was due to an increase in the formation of autophagy rather than a decrease in the degradation of autophagosomes. To examine the role of autophagy in the shear stress-induced EPC differentiation, we pretreated late EPCs with 3-MA, an inhibitor of autophagy, before the application of shear stress. Through real time RT-PCR and FACS analyses, we observed that the pretreatment of EPCs with 3-MA significantly inhibited the shear stress induced up-regulation of vWF and CD31. In the mean time, treatment of EPCs with LY294002 (a small molecule inhibitor of PI3K) or KLF2 siRNA inhibited the shear stress-induced EPC autophagy and differentiation. Conclusion:Autophagy is involved in the shear stress-upregulated expression of endothelial markers vWF and CD31 in EPCs. Moreover, this increase was observed to be mediated by PI3K and KLF2. Although further studies are needed to confirm the relationship between these mechanosensitive molecules, the present results may provide new insights into the relationship between EPC autophagy and differentiation induced by shear stress.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.