诊断和预后推理框架

K. Przytula, A. Choi
{"title":"诊断和预后推理框架","authors":"K. Przytula, A. Choi","doi":"10.1109/AERO.2007.352872","DOIUrl":null,"url":null,"abstract":"This paper describes a general-purpose probabilistic framework for reasoning in diagnosis and prognosis. The framework provides a mathematically rigorous way of handling uncertainty, which is often present in diagnosis and is inherent to prognosis. It is based on an extension of Bayesian network models and Bayesian inference. It coherently integrates multiple sources of evidence in diagnosis and prognosis, including component usage, environmental conditions of operation as well as component health and health trends. The framework has been applied to diagnosis of very complex transportation and aviation systems and to prognosis of electromechanical and electronic subsystems in aviation.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"73 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Reasoning Framework for Diagnosis and Prognosis\",\"authors\":\"K. Przytula, A. Choi\",\"doi\":\"10.1109/AERO.2007.352872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a general-purpose probabilistic framework for reasoning in diagnosis and prognosis. The framework provides a mathematically rigorous way of handling uncertainty, which is often present in diagnosis and is inherent to prognosis. It is based on an extension of Bayesian network models and Bayesian inference. It coherently integrates multiple sources of evidence in diagnosis and prognosis, including component usage, environmental conditions of operation as well as component health and health trends. The framework has been applied to diagnosis of very complex transportation and aviation systems and to prognosis of electromechanical and electronic subsystems in aviation.\",\"PeriodicalId\":6295,\"journal\":{\"name\":\"2007 IEEE Aerospace Conference\",\"volume\":\"73 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2007.352872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2007.352872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文描述了一种用于诊断和预后推理的通用概率框架。该框架提供了一种数学上严格的处理不确定性的方法,不确定性经常出现在诊断中,并且是预后所固有的。它是基于贝叶斯网络模型和贝叶斯推理的扩展。它连贯地整合了诊断和预后方面的多种证据来源,包括组件使用情况、操作环境条件以及组件健康状况和健康趋势。该框架已应用于非常复杂的运输和航空系统的诊断以及航空机电和电子子系统的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reasoning Framework for Diagnosis and Prognosis
This paper describes a general-purpose probabilistic framework for reasoning in diagnosis and prognosis. The framework provides a mathematically rigorous way of handling uncertainty, which is often present in diagnosis and is inherent to prognosis. It is based on an extension of Bayesian network models and Bayesian inference. It coherently integrates multiple sources of evidence in diagnosis and prognosis, including component usage, environmental conditions of operation as well as component health and health trends. The framework has been applied to diagnosis of very complex transportation and aviation systems and to prognosis of electromechanical and electronic subsystems in aviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Current Methods to Identify Helicopter Gear Health NASA's Advanced Radioisotope Power Conversion Technology Development Status Terrain Classification and Classifier Fusion for Planetary Exploration Rovers Earned Value Management at NASA: An Integrated, Lightweight Solution Bootstrapping Particle Filters using Kernel Recursive Least Squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1