Pub Date : 2013-07-23DOI: 10.1109/aero.2007.352844
Paula J. Dempsey, D. Lewicki, Dy D. Le
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI's), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
{"title":"Investigation of Current Methods to Identify Helicopter Gear Health","authors":"Paula J. Dempsey, D. Lewicki, Dy D. Le","doi":"10.1109/aero.2007.352844","DOIUrl":"https://doi.org/10.1109/aero.2007.352844","url":null,"abstract":"This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI's), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"12 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78300964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-07-23DOI: 10.1109/aero.2007.352696
D.J. Anderson, J. Sankovic, D. Wilt, R. Abelson, J. Fleurial
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
{"title":"NASA's Advanced Radioisotope Power Conversion Technology Development Status","authors":"D.J. Anderson, J. Sankovic, D. Wilt, R. Abelson, J. Fleurial","doi":"10.1109/aero.2007.352696","DOIUrl":"https://doi.org/10.1109/aero.2007.352696","url":null,"abstract":"NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"19 1","pages":"1-20"},"PeriodicalIF":0.0,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82606386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-11-01DOI: 10.1017/S0263574708004360
I. Halatci, Christopher A. Brooks, K. Iagnemma
Knowledge of the physical properties of terrain surrounding a planetary exploration rover can be used to allow a rover system to fully exploit its mobility capabilities. Here a study of multi-sensor terrain classification for planetary rovers in Mars and Mars-like environments is presented. Two classification algorithms for color, texture, and range features are presented based on maximum likelihood estimation and support vector machines. In addition, a classification method based on vibration features derived from rover wheel-terrain interaction is briefly described. Two techniques for merging the results of these "low-level" classifiers are presented that rely on Bayesian fusion and meta-classifier fusion. The performance of these algorithms is studied using images from NASA's mars exploration rover mission and through experiments on a four-wheeled test-bed rover operating in Mars-analog terrain. It is shown that accurate terrain classification can be achieved via classifier fusion from visual and tactile features.
{"title":"Terrain Classification and Classifier Fusion for Planetary Exploration Rovers","authors":"I. Halatci, Christopher A. Brooks, K. Iagnemma","doi":"10.1017/S0263574708004360","DOIUrl":"https://doi.org/10.1017/S0263574708004360","url":null,"abstract":"Knowledge of the physical properties of terrain surrounding a planetary exploration rover can be used to allow a rover system to fully exploit its mobility capabilities. Here a study of multi-sensor terrain classification for planetary rovers in Mars and Mars-like environments is presented. Two classification algorithms for color, texture, and range features are presented based on maximum likelihood estimation and support vector machines. In addition, a classification method based on vibration features derived from rover wheel-terrain interaction is briefly described. Two techniques for merging the results of these \"low-level\" classifiers are presented that rely on Bayesian fusion and meta-classifier fusion. The performance of these algorithms is studied using images from NASA's mars exploration rover mission and through experiments on a four-wheeled test-bed rover operating in Mars-analog terrain. It is shown that accurate terrain classification can be achieved via classifier fusion from visual and tactile features.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"116 8 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81906109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-06-18DOI: 10.1109/AERO.2007.352766
Johann Schumannt, Yan Liut, Nasa Ames, Moffett Field
The appeal of adaptive control to the aerospace domain should be attributed to the neural network models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we present several advanced methods proposed for verification and validation (V&V) of adaptive control systems, including Lyapunov analysis, statistical inference, and comparison to the well-known Kalman filters. We also discuss two monitoring tools for two types of neural networks employed in the NASA F-15 flight control system as adaptive learners: the confidence tool for the outputs of a Sigma-Pi network, and the validity index for the output of a Dynamic Cell Structure (DCS) network.
{"title":"Tools and Methods for the Verification and Validation of Adaptive Aircraft Control Systems","authors":"Johann Schumannt, Yan Liut, Nasa Ames, Moffett Field","doi":"10.1109/AERO.2007.352766","DOIUrl":"https://doi.org/10.1109/AERO.2007.352766","url":null,"abstract":"The appeal of adaptive control to the aerospace domain should be attributed to the neural network models adopted in online adaptive systems for their ability to cope with the demands of a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure the reliable performance of such systems. In this paper, we present several advanced methods proposed for verification and validation (V&V) of adaptive control systems, including Lyapunov analysis, statistical inference, and comparison to the well-known Kalman filters. We also discuss two monitoring tools for two types of neural networks employed in the NASA F-15 flight control system as adaptive learners: the confidence tool for the outputs of a Sigma-Pi network, and the validity index for the output of a Dynamic Cell Structure (DCS) network.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"59 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2007-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85778475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-06-18DOI: 10.1109/AERO.2007.353025
P. Putz, D. Maluf, D. Bell, M. Gurram, J. Hsu, H. Patel, K. Swanson
This paper describes a fresh approach to earned value management (EVM) at the U.S. National Aeronautics and Space Administration (NASA). The goal of this approach is to provide a lightweight tool that allows project managers to apply earned value performance measurements with minimal effort in terms of data entry, and without the need to learn the highly specialized jargon that mystifies many EVM solutions. The presented technical and managerial solution addresses the practical challenges of applying EVM in the messy realm of project management. An empirical case study involving five projects at the NASA Ames Research Center illustrates the challenges of creating a consistent performance measurement baseline under the constraints of schedule, budget, and labor requirements, and of matching actual costs with budgeted costs on the level of granularity needed. The case study also highlights the benefits of using the implemented EVM solution in terms of data quality and time savings. The paper concludes with general recommendations for the design and application of EVM tools with the focus on ease of use.
{"title":"Earned Value Management at NASA: An Integrated, Lightweight Solution","authors":"P. Putz, D. Maluf, D. Bell, M. Gurram, J. Hsu, H. Patel, K. Swanson","doi":"10.1109/AERO.2007.353025","DOIUrl":"https://doi.org/10.1109/AERO.2007.353025","url":null,"abstract":"This paper describes a fresh approach to earned value management (EVM) at the U.S. National Aeronautics and Space Administration (NASA). The goal of this approach is to provide a lightweight tool that allows project managers to apply earned value performance measurements with minimal effort in terms of data entry, and without the need to learn the highly specialized jargon that mystifies many EVM solutions. The presented technical and managerial solution addresses the practical challenges of applying EVM in the messy realm of project management. An empirical case study involving five projects at the NASA Ames Research Center illustrates the challenges of creating a consistent performance measurement baseline under the constraints of schedule, budget, and labor requirements, and of matching actual costs with budgeted costs on the level of granularity needed. The case study also highlights the benefits of using the implemented EVM solution in terms of data quality and time savings. The paper concludes with general recommendations for the design and application of EVM tools with the focus on ease of use.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"31 6 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2007-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81716017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-06-18DOI: 10.1109/AERO.2007.353043
Boris N. Oreshkin, M. Coates
Although particle filters are extremely effective algorithms for object tracking, one of their limitations is a reliance on an accurate model for the object dynamics and observation mechanism. The limitation is circumvented to some extent by the incorporation of parameterized models in the filter, with simultaneous on-line learning of model parameters, but frequently, identification of an appropriate parametric model is extremely difficult. This paper addresses this problem, describing an algorithm that combines kernel recursive least squares and particle filtering to learn a functional approximation for the measurement mechanism whilst generating state estimates. The paper focuses on the specific scenario when a training period exists during which supplementary measurements are available from a source that can be accurately modelled. Simulation results indicate that the proposed algorithm, which requires very little information about the true measurement mechanism, can approach the performance of a particle filter equipped with the correct observation model.
{"title":"Bootstrapping Particle Filters using Kernel Recursive Least Squares","authors":"Boris N. Oreshkin, M. Coates","doi":"10.1109/AERO.2007.353043","DOIUrl":"https://doi.org/10.1109/AERO.2007.353043","url":null,"abstract":"Although particle filters are extremely effective algorithms for object tracking, one of their limitations is a reliance on an accurate model for the object dynamics and observation mechanism. The limitation is circumvented to some extent by the incorporation of parameterized models in the filter, with simultaneous on-line learning of model parameters, but frequently, identification of an appropriate parametric model is extremely difficult. This paper addresses this problem, describing an algorithm that combines kernel recursive least squares and particle filtering to learn a functional approximation for the measurement mechanism whilst generating state estimates. The paper focuses on the specific scenario when a training period exists during which supplementary measurements are available from a source that can be accurately modelled. Simulation results indicate that the proposed algorithm, which requires very little information about the true measurement mechanism, can approach the performance of a particle filter equipped with the correct observation model.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"7 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2007-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85426521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-03-03DOI: 10.1109/AERO.2007.352795
A. Mannes, J. Golbeck
With the rise of the netwar paradigm new tools are needed to support intelligence collection and analysis. The Semantic Web uses information online in which data is defined in machine-readable terms, allows for the creation of flexible, adaptable knowledge bases that can be used collaboratively. This paper discusses how the Semantic Web facilitates research on terrorist organizations, particularly how a variety of useful features - such as network visualization and data attribution - can be used.
{"title":"Building a Semantic Web Portal for Counter Terror Analysis","authors":"A. Mannes, J. Golbeck","doi":"10.1109/AERO.2007.352795","DOIUrl":"https://doi.org/10.1109/AERO.2007.352795","url":null,"abstract":"With the rise of the netwar paradigm new tools are needed to support intelligence collection and analysis. The Semantic Web uses information online in which data is defined in machine-readable terms, allows for the creation of flexible, adaptable knowledge bases that can be used collaboratively. This paper discusses how the Semantic Web facilitates research on terrorist organizations, particularly how a variety of useful features - such as network visualization and data attribution - can be used.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"56 79 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2007-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74205501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-03-03DOI: 10.1109/AERO.2007.352828
C. Peng, G. Ortiz, T. Rivellini, D. Lee, S. Lih, J. Waydo, C. White, S. Haggart, C. Voorhees, R. Rainen
The Mars Science Laboratory is being planned to launch in 2009 to deliver the third generation rover safely to the surface of Mars and conduct comprehensive in situ investigations. To deliver the rover for precision touchdown landing, it requires a new Entry, Descent, and Landing (EDL) approach using hypersonic aeromaneuver guided entry and skycrane-based powered descent and landing. The skycrane system is capable of efficiently and safely landing a large payload on Mars using a propulsion system configured into a descent stage. The rover will be released from the descent stage via descent-rate-limiter umbilical device and then placed directly onto the surface of Mars. As required by the skycrane landing architecture, the MSL rover is designed as a "lander" to survive touchdown as well as traverse environments. Since it is difficult, costly and, in many cases, impossible to test the skycrane descent and landing system in Mars-like environments, the MSL project relies heavily on dynamic simulations to validate the skycrane landing concept and predict the landing loads and stability of the rover. As a result, a multi-year extensive Loads and Stability Analysis Program has been conducted to develop seamless and robust simulations of the complicated skycrane landing dynamics with a large set of environmental parameters. This paper describes the overall approaches to the MSL touchdown simulation effort, landing loads and stability analysis, rover developmental test program, and applications of both the analysis and testing results to a mass-efficient and landing-capable rover structure design.
{"title":"Dynamic Simulations of Mars Science Laboratory EDL Landing Loads and Stability","authors":"C. Peng, G. Ortiz, T. Rivellini, D. Lee, S. Lih, J. Waydo, C. White, S. Haggart, C. Voorhees, R. Rainen","doi":"10.1109/AERO.2007.352828","DOIUrl":"https://doi.org/10.1109/AERO.2007.352828","url":null,"abstract":"The Mars Science Laboratory is being planned to launch in 2009 to deliver the third generation rover safely to the surface of Mars and conduct comprehensive in situ investigations. To deliver the rover for precision touchdown landing, it requires a new Entry, Descent, and Landing (EDL) approach using hypersonic aeromaneuver guided entry and skycrane-based powered descent and landing. The skycrane system is capable of efficiently and safely landing a large payload on Mars using a propulsion system configured into a descent stage. The rover will be released from the descent stage via descent-rate-limiter umbilical device and then placed directly onto the surface of Mars. As required by the skycrane landing architecture, the MSL rover is designed as a \"lander\" to survive touchdown as well as traverse environments. Since it is difficult, costly and, in many cases, impossible to test the skycrane descent and landing system in Mars-like environments, the MSL project relies heavily on dynamic simulations to validate the skycrane landing concept and predict the landing loads and stability of the rover. As a result, a multi-year extensive Loads and Stability Analysis Program has been conducted to develop seamless and robust simulations of the complicated skycrane landing dynamics with a large set of environmental parameters. This paper describes the overall approaches to the MSL touchdown simulation effort, landing loads and stability analysis, rover developmental test program, and applications of both the analysis and testing results to a mass-efficient and landing-capable rover structure design.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"23 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2007-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75167677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-03-03DOI: 10.1109/AERO.2007.353096
D. Buehler, G. Donohoe
Signal and image processing and control algorithms are typically developed using double-precision floating point arithmetic, in a high-level software design environment such as Matlab/Simulink, IDL, or C/C++. The avionics system designer must implement these computations in a platform that satisfies the constraints of on-board data processing such as size, weight, power consumption and radiation hardness. The ability to implement math-intensive signal processing and control algorithms on simple, integer-only hardware would greatly increase the avionics system designer's options. This paper presents a methodology and software tool for generating fixed point computations, enabling integer-only processors to achieve numerical accuracy comparable to floating point, faster and with reduced size, weight, cost, and power consumption. The methodology has been successfully demonstrated on image focal plane array calibration, Fourier transform hyper-spectral imager data conversion, wavelet-based feature selection, and various pattern recognition tasks.
{"title":"SIFOpt - Fixed-Point Implementations of Calculations from Floating-Point Descriptions","authors":"D. Buehler, G. Donohoe","doi":"10.1109/AERO.2007.353096","DOIUrl":"https://doi.org/10.1109/AERO.2007.353096","url":null,"abstract":"Signal and image processing and control algorithms are typically developed using double-precision floating point arithmetic, in a high-level software design environment such as Matlab/Simulink, IDL, or C/C++. The avionics system designer must implement these computations in a platform that satisfies the constraints of on-board data processing such as size, weight, power consumption and radiation hardness. The ability to implement math-intensive signal processing and control algorithms on simple, integer-only hardware would greatly increase the avionics system designer's options. This paper presents a methodology and software tool for generating fixed point computations, enabling integer-only processors to achieve numerical accuracy comparable to floating point, faster and with reduced size, weight, cost, and power consumption. The methodology has been successfully demonstrated on image focal plane array calibration, Fourier transform hyper-spectral imager data conversion, wavelet-based feature selection, and various pattern recognition tasks.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"4 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2007-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75352991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-03-03DOI: 10.1109/AERO.2007.352715
Wolfgang Fink, J. Dohm, M. Tarbell, T. Hare, V. Baker, D. Schulze‐Makuch, R. Furfaro, A. Fairén, T. Ferré, H. Miyamoto, G. Komatsu, W. Mahaney
A fundamentally new (scientific) reconnaissance mission concept, termed tier-scalable reconnaissance, for remote planetary (including Earth) atmospheric, surface and subsurface exploration recently has been devised that soon will replace the engineering and safety constrained mission designs of the past, allowing for optimal acquisition of geologic, paleohydrologic, paleoclimatic, and possible astrobiologic information of Venus, Mars, Europa, Ganymede, Titan, Enceladus, Triton, and other extraterrestrial targets. This paradigm is equally applicable to potentially hazardous or inaccessible operational areas on Earth such as those related to military or terrorist activities, or areas that have been exposed to biochemical agents, radiation, or natural disasters. Traditional missions have performed local, ground-level reconnaissance through rovers and immobile landers, or global mapping performed by an orbiter. The former is safety and engineering constrained, affording limited detailed reconnaissance of a single site at the expense of a regional understanding, while the latter returns immense datasets, often overlooking detailed information of local and regional significance.
{"title":"Tier-Scalable Reconnaissance Missions For The Autonomous Exploration Of Planetary Bodies","authors":"Wolfgang Fink, J. Dohm, M. Tarbell, T. Hare, V. Baker, D. Schulze‐Makuch, R. Furfaro, A. Fairén, T. Ferré, H. Miyamoto, G. Komatsu, W. Mahaney","doi":"10.1109/AERO.2007.352715","DOIUrl":"https://doi.org/10.1109/AERO.2007.352715","url":null,"abstract":"A fundamentally new (scientific) reconnaissance mission concept, termed tier-scalable reconnaissance, for remote planetary (including Earth) atmospheric, surface and subsurface exploration recently has been devised that soon will replace the engineering and safety constrained mission designs of the past, allowing for optimal acquisition of geologic, paleohydrologic, paleoclimatic, and possible astrobiologic information of Venus, Mars, Europa, Ganymede, Titan, Enceladus, Triton, and other extraterrestrial targets. This paradigm is equally applicable to potentially hazardous or inaccessible operational areas on Earth such as those related to military or terrorist activities, or areas that have been exposed to biochemical agents, radiation, or natural disasters. Traditional missions have performed local, ground-level reconnaissance through rovers and immobile landers, or global mapping performed by an orbiter. The former is safety and engineering constrained, affording limited detailed reconnaissance of a single site at the expense of a regional understanding, while the latter returns immense datasets, often overlooking detailed information of local and regional significance.","PeriodicalId":6295,"journal":{"name":"2007 IEEE Aerospace Conference","volume":"7 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2007-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75434275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}