不是另一个否定基准:子条款否定的NaN-NLI测试套件

Q3 Environmental Science AACL Bioflux Pub Date : 2022-10-06 DOI:10.48550/arXiv.2210.03256
Thinh Hung Truong, Yulia Otmakhova, Tim Baldwin, Trevor Cohn, Karin M. Verspoor, Jey Han Lau
{"title":"不是另一个否定基准:子条款否定的NaN-NLI测试套件","authors":"Thinh Hung Truong, Yulia Otmakhova, Tim Baldwin, Trevor Cohn, Karin M. Verspoor, Jey Han Lau","doi":"10.48550/arXiv.2210.03256","DOIUrl":null,"url":null,"abstract":"Negation is poorly captured by current language models, although the extent of this problem is not widely understood. We introduce a natural language inference (NLI) test suite to enable probing the capabilities of NLP methods, with the aim of understanding sub-clausal negation. The test suite contains premise–hypothesis pairs where the premise contains sub-clausal negation and the hypothesis is constructed by making minimal modifications to the premise in order to reflect different possible interpretations. Aside from adopting standard NLI labels, our test suite is systematically constructed under a rigorous linguistic framework. It includes annotation of negation types and constructions grounded in linguistic theory, as well as the operations used to construct hypotheses. This facilitates fine-grained analysis of model performance. We conduct experiments using pre-trained language models to demonstrate that our test suite is more challenging than existing benchmarks focused on negation, and show how our annotation supports a deeper understanding of the current NLI capabilities in terms of negation and quantification.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"11 1","pages":"883-894"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Not another Negation Benchmark: The NaN-NLI Test Suite for Sub-clausal Negation\",\"authors\":\"Thinh Hung Truong, Yulia Otmakhova, Tim Baldwin, Trevor Cohn, Karin M. Verspoor, Jey Han Lau\",\"doi\":\"10.48550/arXiv.2210.03256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negation is poorly captured by current language models, although the extent of this problem is not widely understood. We introduce a natural language inference (NLI) test suite to enable probing the capabilities of NLP methods, with the aim of understanding sub-clausal negation. The test suite contains premise–hypothesis pairs where the premise contains sub-clausal negation and the hypothesis is constructed by making minimal modifications to the premise in order to reflect different possible interpretations. Aside from adopting standard NLI labels, our test suite is systematically constructed under a rigorous linguistic framework. It includes annotation of negation types and constructions grounded in linguistic theory, as well as the operations used to construct hypotheses. This facilitates fine-grained analysis of model performance. We conduct experiments using pre-trained language models to demonstrate that our test suite is more challenging than existing benchmarks focused on negation, and show how our annotation supports a deeper understanding of the current NLI capabilities in terms of negation and quantification.\",\"PeriodicalId\":39298,\"journal\":{\"name\":\"AACL Bioflux\",\"volume\":\"11 1\",\"pages\":\"883-894\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AACL Bioflux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.03256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.03256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 11

摘要

目前的语言模型很难捕捉到否定,尽管这个问题的程度还没有被广泛理解。我们引入了一个自然语言推理(NLI)测试套件,以探测NLP方法的能力,目的是理解子条款否定。测试套件包含前提-假设对,其中前提包含子条款否定,假设是通过对前提进行最小修改来构建的,以反映不同的可能解释。除了采用标准的NLI标签外,我们的测试套件是在严格的语言框架下系统构建的。它包括基于语言学理论的否定类型和结构的注释,以及用于构建假设的操作。这有助于对模型性能进行细粒度分析。我们使用预先训练的语言模型进行实验,以证明我们的测试套件比现有的专注于否定的基准测试更具挑战性,并展示我们的注释如何支持对否定和量化方面当前NLI能力的更深入理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Not another Negation Benchmark: The NaN-NLI Test Suite for Sub-clausal Negation
Negation is poorly captured by current language models, although the extent of this problem is not widely understood. We introduce a natural language inference (NLI) test suite to enable probing the capabilities of NLP methods, with the aim of understanding sub-clausal negation. The test suite contains premise–hypothesis pairs where the premise contains sub-clausal negation and the hypothesis is constructed by making minimal modifications to the premise in order to reflect different possible interpretations. Aside from adopting standard NLI labels, our test suite is systematically constructed under a rigorous linguistic framework. It includes annotation of negation types and constructions grounded in linguistic theory, as well as the operations used to construct hypotheses. This facilitates fine-grained analysis of model performance. We conduct experiments using pre-trained language models to demonstrate that our test suite is more challenging than existing benchmarks focused on negation, and show how our annotation supports a deeper understanding of the current NLI capabilities in terms of negation and quantification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1