生长素在微生物中的生物合成途径

Q4 Biochemistry, Genetics and Molecular Biology Mikrobiolohichnyi zhurnal Pub Date : 2022-11-28 DOI:10.15407/microbiolj84.02.057
T. Pirog, D. Piatetska, N. Klymenko, G. Iutynska
{"title":"生长素在微生物中的生物合成途径","authors":"T. Pirog, D. Piatetska, N. Klymenko, G. Iutynska","doi":"10.15407/microbiolj84.02.057","DOIUrl":null,"url":null,"abstract":"Among plant hormones, auxins, in particular indole-3-acetic acid (IAA), are the most studied and researched. Almost all groups of soil microorganisms, both plant-associated and non-plant-associated bacteria, fungi, and phytopathogenic microorganisms are capable of producing auxins. The development of preparations for crop production is directly related to the production of bacterial strains with high auxin-synthesizing potential, which is possible only with a full understanding of the ways of regulation and synthesis of auxins in bacteria. The synthesis of auxins in microorganisms can take place in two ways: by the gradual conversion of tryptophan to IAA (tryptophan-dependent pathway) or by the use of other intermediates (tryptophan-independent pathway). The latter is poorly clarified, and in the literature available today, there is only a small amount of information on the functioning of this pathway in microorganisms. The review presents literature data on the ways of auxin biosynthesis in different groups of microorganisms, as well as approaches to the intensification of indole-3-acetic acid synthesis. The formation of IAA from tryptophan can be carried out in the following ways: through indole-3-pyruvate, through indole-3-acetamide, and through indole-3-acetonitrile. The vast majority of available publications are related to the assimilation of tryptophan through the formation of indole-3-pyruvate as this pathway is the most common among microorganisms. Thus, it functions in rhizospheric, symbiotic, endophytic, and free-living bacteria. The concentration of synthesized IAA among natural strains is in the range from 260 to 1130 μg/mL. Microorganisms in which the indole-3-acetamide pathway functions are characterized by lower auxin-synthesizing ability compared to those that assimilate tryptophan through indole-3-pyruvate. These include bacteria of the genera Streptomyces, Pseudomonas, and Bradyrhizobium and fungi of the genus Fusarium. The level of synthesis of IAA in such microorganisms is from 1.17×10−4 to 255.6 μg/mL. To date, only two strains that assimilate tryptophan via the indole-3-acetonitrile pathway and form up to 31.5 μg/mL IAA have been described in the available literature. To intensify the synthesis of indole-3-acetic acid, researchers use two main approaches: the first consists in introducing into the culture medium of exogenous precursors of biosynthesis (usually tryptophan, less often indole-3-pyruvate, indole-3-acetamide, and indole-3-acetonitrile); the second — in increasing the expression of the corresponding genes and creating recomindolebinant strains-supersynthetics of IAA. The largest number of publications is devoted to increasing the synthesis of IAA in the presence of biosynthesis precursors. Depending on the type of bacteria, the composition of the nutrient medium, and the amount of exogenously introduced precursor, the synthesis of the final product was increased by 1.2—27 times compared to that before the intensifi cation. Thus, in the presence of 11 g/L tryptophan, Enterobacter sp. DMKU-RP206 synthesized 5.56 g/L, while in a medium without the precursor, it yielded only 0.45 g/L IAA. Recombinant strains Corynebacterium glutamicum ATCC 13032 and Escherichia coli MG165 formed 7.1 and 7.3 g/L IAA, respectively, when tryptophan (10 g/L) was added to the culture medium. The level of auxin synthesis in microorganisms may be increased under stress conditions (temperature, pH, biotic and abiotic stress factors), but in this case, the IAA concentration does not exceed 100 mg/L, and therefore this method of intensification cannot compete with the others above.","PeriodicalId":18628,"journal":{"name":"Mikrobiolohichnyi zhurnal","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ways of Auxin Biosynthesis in Microorganisms\",\"authors\":\"T. Pirog, D. Piatetska, N. Klymenko, G. Iutynska\",\"doi\":\"10.15407/microbiolj84.02.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among plant hormones, auxins, in particular indole-3-acetic acid (IAA), are the most studied and researched. Almost all groups of soil microorganisms, both plant-associated and non-plant-associated bacteria, fungi, and phytopathogenic microorganisms are capable of producing auxins. The development of preparations for crop production is directly related to the production of bacterial strains with high auxin-synthesizing potential, which is possible only with a full understanding of the ways of regulation and synthesis of auxins in bacteria. The synthesis of auxins in microorganisms can take place in two ways: by the gradual conversion of tryptophan to IAA (tryptophan-dependent pathway) or by the use of other intermediates (tryptophan-independent pathway). The latter is poorly clarified, and in the literature available today, there is only a small amount of information on the functioning of this pathway in microorganisms. The review presents literature data on the ways of auxin biosynthesis in different groups of microorganisms, as well as approaches to the intensification of indole-3-acetic acid synthesis. The formation of IAA from tryptophan can be carried out in the following ways: through indole-3-pyruvate, through indole-3-acetamide, and through indole-3-acetonitrile. The vast majority of available publications are related to the assimilation of tryptophan through the formation of indole-3-pyruvate as this pathway is the most common among microorganisms. Thus, it functions in rhizospheric, symbiotic, endophytic, and free-living bacteria. The concentration of synthesized IAA among natural strains is in the range from 260 to 1130 μg/mL. Microorganisms in which the indole-3-acetamide pathway functions are characterized by lower auxin-synthesizing ability compared to those that assimilate tryptophan through indole-3-pyruvate. These include bacteria of the genera Streptomyces, Pseudomonas, and Bradyrhizobium and fungi of the genus Fusarium. The level of synthesis of IAA in such microorganisms is from 1.17×10−4 to 255.6 μg/mL. To date, only two strains that assimilate tryptophan via the indole-3-acetonitrile pathway and form up to 31.5 μg/mL IAA have been described in the available literature. To intensify the synthesis of indole-3-acetic acid, researchers use two main approaches: the first consists in introducing into the culture medium of exogenous precursors of biosynthesis (usually tryptophan, less often indole-3-pyruvate, indole-3-acetamide, and indole-3-acetonitrile); the second — in increasing the expression of the corresponding genes and creating recomindolebinant strains-supersynthetics of IAA. The largest number of publications is devoted to increasing the synthesis of IAA in the presence of biosynthesis precursors. Depending on the type of bacteria, the composition of the nutrient medium, and the amount of exogenously introduced precursor, the synthesis of the final product was increased by 1.2—27 times compared to that before the intensifi cation. Thus, in the presence of 11 g/L tryptophan, Enterobacter sp. DMKU-RP206 synthesized 5.56 g/L, while in a medium without the precursor, it yielded only 0.45 g/L IAA. Recombinant strains Corynebacterium glutamicum ATCC 13032 and Escherichia coli MG165 formed 7.1 and 7.3 g/L IAA, respectively, when tryptophan (10 g/L) was added to the culture medium. The level of auxin synthesis in microorganisms may be increased under stress conditions (temperature, pH, biotic and abiotic stress factors), but in this case, the IAA concentration does not exceed 100 mg/L, and therefore this method of intensification cannot compete with the others above.\",\"PeriodicalId\":18628,\"journal\":{\"name\":\"Mikrobiolohichnyi zhurnal\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mikrobiolohichnyi zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/microbiolj84.02.057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiolohichnyi zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/microbiolj84.02.057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

在植物激素中,生长素,尤其是吲哚-3-乙酸(IAA)是研究最多的。几乎所有种类的土壤微生物,包括植物相关的和非植物相关的细菌、真菌和植物病原微生物都能够产生生长素。作物制剂的发展直接关系到生长素合成潜力高的菌株的产生,只有充分了解生长素在细菌中的调控和合成途径才有可能。微生物中生长素的合成可以通过两种方式进行:通过色氨酸逐渐转化为IAA(色氨酸依赖途径)或通过使用其他中间体(色氨酸独立途径)。后者尚不清楚,并且在目前可用的文献中,只有少量关于该途径在微生物中的功能的信息。本文综述了生长素在不同微生物群中合成途径的文献资料,以及加强吲哚-3-乙酸合成的途径。色氨酸可通过吲哚-3-丙酮酸、吲哚-3-乙酰胺和吲哚-3-乙腈三种途径生成IAA。绝大多数现有的出版物都与色氨酸通过形成吲哚-3-丙酮酸的同化有关,因为这一途径在微生物中最常见。因此,它在根际、共生、内生和自由生活的细菌中起作用。天然菌株合成IAA浓度范围为260 ~ 1130 μg/mL。与那些通过吲哚-3-丙酮酸吸收色氨酸的微生物相比,具有吲哚-3-乙酰胺途径功能的微生物的生长素合成能力较低。这些细菌包括链霉菌属的细菌、假单胞菌、慢生根瘤菌和镰刀菌属的真菌。这些微生物中IAA的合成水平为1.17×10−4 ~ 255.6 μg/mL。迄今为止,文献中只报道了两种通过吲哚-3-乙腈途径吸收色氨酸并形成高达31.5 μg/mL IAA的菌株。为了加强吲哚-3-乙酸的合成,研究人员主要采用两种方法:第一种是在培养基中引入外源性生物合成前体(通常是色氨酸,较少使用的是吲哚-3-丙酮酸酯、吲哚-3-乙酰胺和吲哚-3-乙腈);二是增加相应基因的表达,创造出IAA的超合成菌株。最多的出版物致力于在生物合成前体存在的情况下增加IAA的合成。根据细菌种类、营养培养基组成和外源前体引入量的不同,最终产物的合成比强化前提高了1.2 ~ 27倍。因此,在11 g/L色氨酸存在的情况下,肠杆菌sp. DMKU-RP206合成了5.56 g/L的IAA,而在没有前体的培养基中,IAA的产量仅为0.45 g/L。当向培养基中添加色氨酸(10 g/L)时,重组菌株谷氨酸棒状杆菌ATCC 13032和大肠杆菌MG165分别形成7.1和7.3 g/L的IAA。在胁迫条件下(温度、pH、生物和非生物胁迫因素),微生物的生长素合成水平可能会增加,但在这种情况下,IAA浓度不超过100 mg/L,因此这种强化方法不能与上述其他方法竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ways of Auxin Biosynthesis in Microorganisms
Among plant hormones, auxins, in particular indole-3-acetic acid (IAA), are the most studied and researched. Almost all groups of soil microorganisms, both plant-associated and non-plant-associated bacteria, fungi, and phytopathogenic microorganisms are capable of producing auxins. The development of preparations for crop production is directly related to the production of bacterial strains with high auxin-synthesizing potential, which is possible only with a full understanding of the ways of regulation and synthesis of auxins in bacteria. The synthesis of auxins in microorganisms can take place in two ways: by the gradual conversion of tryptophan to IAA (tryptophan-dependent pathway) or by the use of other intermediates (tryptophan-independent pathway). The latter is poorly clarified, and in the literature available today, there is only a small amount of information on the functioning of this pathway in microorganisms. The review presents literature data on the ways of auxin biosynthesis in different groups of microorganisms, as well as approaches to the intensification of indole-3-acetic acid synthesis. The formation of IAA from tryptophan can be carried out in the following ways: through indole-3-pyruvate, through indole-3-acetamide, and through indole-3-acetonitrile. The vast majority of available publications are related to the assimilation of tryptophan through the formation of indole-3-pyruvate as this pathway is the most common among microorganisms. Thus, it functions in rhizospheric, symbiotic, endophytic, and free-living bacteria. The concentration of synthesized IAA among natural strains is in the range from 260 to 1130 μg/mL. Microorganisms in which the indole-3-acetamide pathway functions are characterized by lower auxin-synthesizing ability compared to those that assimilate tryptophan through indole-3-pyruvate. These include bacteria of the genera Streptomyces, Pseudomonas, and Bradyrhizobium and fungi of the genus Fusarium. The level of synthesis of IAA in such microorganisms is from 1.17×10−4 to 255.6 μg/mL. To date, only two strains that assimilate tryptophan via the indole-3-acetonitrile pathway and form up to 31.5 μg/mL IAA have been described in the available literature. To intensify the synthesis of indole-3-acetic acid, researchers use two main approaches: the first consists in introducing into the culture medium of exogenous precursors of biosynthesis (usually tryptophan, less often indole-3-pyruvate, indole-3-acetamide, and indole-3-acetonitrile); the second — in increasing the expression of the corresponding genes and creating recomindolebinant strains-supersynthetics of IAA. The largest number of publications is devoted to increasing the synthesis of IAA in the presence of biosynthesis precursors. Depending on the type of bacteria, the composition of the nutrient medium, and the amount of exogenously introduced precursor, the synthesis of the final product was increased by 1.2—27 times compared to that before the intensifi cation. Thus, in the presence of 11 g/L tryptophan, Enterobacter sp. DMKU-RP206 synthesized 5.56 g/L, while in a medium without the precursor, it yielded only 0.45 g/L IAA. Recombinant strains Corynebacterium glutamicum ATCC 13032 and Escherichia coli MG165 formed 7.1 and 7.3 g/L IAA, respectively, when tryptophan (10 g/L) was added to the culture medium. The level of auxin synthesis in microorganisms may be increased under stress conditions (temperature, pH, biotic and abiotic stress factors), but in this case, the IAA concentration does not exceed 100 mg/L, and therefore this method of intensification cannot compete with the others above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mikrobiolohichnyi zhurnal
Mikrobiolohichnyi zhurnal Medicine-Microbiology (medical)
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Гуанідінійвмісний олігомер як інгібітор мікробної корозії металу Xanthomonas fuscans subsp. fuscans — a Pathogen of Small Brown Spot of Legumes Роль бактерій як основи пелагічних харчових ланцюгів в ультраоліготрофних північних патагонських озерах: міні-огляд Phenotypic and Genotypic Criteria for the Screening of Highly Active S-Type Pyocins Pseudomonas aeruginosa Producers Характеристика генів інтегронів клінічних ізолятів Pseudomonas aeruginosa, які реалізують резистентність до антибіотиків та біоплівкоутворення цими штамами
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1