单壁嵌入式支链碳纳米管输送纳米流体的非线性热-磁-机械振动分析

A. Yinusa, M. Sobamowo
{"title":"单壁嵌入式支链碳纳米管输送纳米流体的非线性热-磁-机械振动分析","authors":"A. Yinusa, M. Sobamowo","doi":"10.1115/1.4062695","DOIUrl":null,"url":null,"abstract":"\n In this present study, the nonlinear thermal-magneto-mechanical stability and vibration of branched nanotube conveying nano-magnetic fluid embedded in linear and nonlinear elastic foundations are analyzed. The governing equations are established via Euler–Bernoulli theory, Hamilton’s principle, and the nonlocal theory of elasticity. The fluid flow and thermal behaviors of the nanofluid are described using modified Navier–Stokes and conservation of energy equations. With the aid of the Galerkin decomposition technique and differential transformation method (DTM), the coupled thermos-fluidic-vibration equation is solved analytically. The analytical solutions as presented in this study match with an existing experimental result and as such used to explore the influences of nonlocal parameters, downstream or branch angle, temperature, magnetic effect, fluid velocity, foundation parameters, and end conditions on vibrations of the nanotube. The results indicate that decreasing temperature change and augmenting the nanotube branch angle decreases the stability for the prebifurcation domain but increases for the post-bifurcation region. Furthermore, the magnetic term possesses a damping or an attenuating impact on the nanotube vibration response at any mode and for any boundary condition considered. It is anticipated that the outcome of this present study will find applications in the strategic optimization of designed nano-devices under thermo-mechanical flow-induced vibration.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Thermal-Magneto-Mechanical Vibration Analysis of Single-Walled Embedded Branched Carbon Nanotubes Conveying Nanofluid\",\"authors\":\"A. Yinusa, M. Sobamowo\",\"doi\":\"10.1115/1.4062695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this present study, the nonlinear thermal-magneto-mechanical stability and vibration of branched nanotube conveying nano-magnetic fluid embedded in linear and nonlinear elastic foundations are analyzed. The governing equations are established via Euler–Bernoulli theory, Hamilton’s principle, and the nonlocal theory of elasticity. The fluid flow and thermal behaviors of the nanofluid are described using modified Navier–Stokes and conservation of energy equations. With the aid of the Galerkin decomposition technique and differential transformation method (DTM), the coupled thermos-fluidic-vibration equation is solved analytically. The analytical solutions as presented in this study match with an existing experimental result and as such used to explore the influences of nonlocal parameters, downstream or branch angle, temperature, magnetic effect, fluid velocity, foundation parameters, and end conditions on vibrations of the nanotube. The results indicate that decreasing temperature change and augmenting the nanotube branch angle decreases the stability for the prebifurcation domain but increases for the post-bifurcation region. Furthermore, the magnetic term possesses a damping or an attenuating impact on the nanotube vibration response at any mode and for any boundary condition considered. It is anticipated that the outcome of this present study will find applications in the strategic optimization of designed nano-devices under thermo-mechanical flow-induced vibration.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了纳米磁性流体的支链纳米管在线性和非线性弹性地基中的非线性热磁机械稳定性和振动特性。利用欧拉-伯努利理论、汉密尔顿原理和非局部弹性理论建立了控制方程。利用修正的Navier-Stokes方程和能量守恒方程描述了纳米流体的流动和热行为。利用伽辽金分解技术和微分变换方法,对热-流-振动耦合方程进行了解析求解。本文给出的解析解与已有的实验结果相吻合,可用于探讨非局部参数、下游或分支角度、温度、磁效应、流体速度、基础参数和端部条件对纳米管振动的影响。结果表明,减小温度变化和增大纳米管分支角会降低分叉前区域的稳定性,而增加分叉后区域的稳定性。此外,在考虑任何模式和任何边界条件时,磁项对纳米管的振动响应具有阻尼或衰减作用。预计本研究结果将应用于热机械流激振动下纳米器件的设计策略优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Thermal-Magneto-Mechanical Vibration Analysis of Single-Walled Embedded Branched Carbon Nanotubes Conveying Nanofluid
In this present study, the nonlinear thermal-magneto-mechanical stability and vibration of branched nanotube conveying nano-magnetic fluid embedded in linear and nonlinear elastic foundations are analyzed. The governing equations are established via Euler–Bernoulli theory, Hamilton’s principle, and the nonlocal theory of elasticity. The fluid flow and thermal behaviors of the nanofluid are described using modified Navier–Stokes and conservation of energy equations. With the aid of the Galerkin decomposition technique and differential transformation method (DTM), the coupled thermos-fluidic-vibration equation is solved analytically. The analytical solutions as presented in this study match with an existing experimental result and as such used to explore the influences of nonlocal parameters, downstream or branch angle, temperature, magnetic effect, fluid velocity, foundation parameters, and end conditions on vibrations of the nanotube. The results indicate that decreasing temperature change and augmenting the nanotube branch angle decreases the stability for the prebifurcation domain but increases for the post-bifurcation region. Furthermore, the magnetic term possesses a damping or an attenuating impact on the nanotube vibration response at any mode and for any boundary condition considered. It is anticipated that the outcome of this present study will find applications in the strategic optimization of designed nano-devices under thermo-mechanical flow-induced vibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1