普鲁士蓝纳米颗粒通过清除活性氧具有潜在的抗炎特性

Wei Zhang, N. Gu, Yu Zhang
{"title":"普鲁士蓝纳米颗粒通过清除活性氧具有潜在的抗炎特性","authors":"Wei Zhang, N. Gu, Yu Zhang","doi":"10.14800/ICS.1342","DOIUrl":null,"url":null,"abstract":"Iron-based nanomaterials are thought to be cytotoxic in recent researches due to the mechanism that they can produce hydroxyl radical (•OH) in cells via Fenton reaction. However, we found Prussian blue nanoparticles (PBNPs) possess reactive oxygen species (ROS) scavenging ability due to their peroxidase (POD), catalase (CAT), super-oxide dismutase (SOD)-like activities and affinity for •OH. We theorized the multienzyme-like activities of PBNPs were caused by their abundant redox potentials in different forms: Prussian White (PW), Prussian blue (PB), Berlin Green (BG) and Prussian Yellow (PY), what makes them admirable electron transporters. The reported PBNPs show anti-inflammation ability in lipopolysaccharide (LPS)-induced cell and animal inflammation research endeavors.","PeriodicalId":13679,"journal":{"name":"Inflammation and cell signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prussian blue nanoparticles possess potential anti-inflammatory properties via scavenging reactive oxygen species\",\"authors\":\"Wei Zhang, N. Gu, Yu Zhang\",\"doi\":\"10.14800/ICS.1342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron-based nanomaterials are thought to be cytotoxic in recent researches due to the mechanism that they can produce hydroxyl radical (•OH) in cells via Fenton reaction. However, we found Prussian blue nanoparticles (PBNPs) possess reactive oxygen species (ROS) scavenging ability due to their peroxidase (POD), catalase (CAT), super-oxide dismutase (SOD)-like activities and affinity for •OH. We theorized the multienzyme-like activities of PBNPs were caused by their abundant redox potentials in different forms: Prussian White (PW), Prussian blue (PB), Berlin Green (BG) and Prussian Yellow (PY), what makes them admirable electron transporters. The reported PBNPs show anti-inflammation ability in lipopolysaccharide (LPS)-induced cell and animal inflammation research endeavors.\",\"PeriodicalId\":13679,\"journal\":{\"name\":\"Inflammation and cell signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and cell signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/ICS.1342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and cell signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/ICS.1342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

铁基纳米材料可以通过芬顿反应在细胞内产生羟基自由基(•OH),近年来被认为具有细胞毒性。然而,我们发现普鲁士蓝纳米颗粒(PBNPs)由于其过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)样活性和对•OH的亲和力而具有活性氧(ROS)清除能力。我们推测PBNPs的多酶样活性是由它们丰富的氧化还原电位引起的,它们以不同的形式存在:普鲁士白(PW)、普鲁士蓝(PB)、柏林绿(BG)和普鲁士黄(PY),这使它们成为令人羡慕的电子传递体。所报道的PBNPs在脂多糖(LPS)诱导的细胞和动物炎症研究中显示出抗炎症能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prussian blue nanoparticles possess potential anti-inflammatory properties via scavenging reactive oxygen species
Iron-based nanomaterials are thought to be cytotoxic in recent researches due to the mechanism that they can produce hydroxyl radical (•OH) in cells via Fenton reaction. However, we found Prussian blue nanoparticles (PBNPs) possess reactive oxygen species (ROS) scavenging ability due to their peroxidase (POD), catalase (CAT), super-oxide dismutase (SOD)-like activities and affinity for •OH. We theorized the multienzyme-like activities of PBNPs were caused by their abundant redox potentials in different forms: Prussian White (PW), Prussian blue (PB), Berlin Green (BG) and Prussian Yellow (PY), what makes them admirable electron transporters. The reported PBNPs show anti-inflammation ability in lipopolysaccharide (LPS)-induced cell and animal inflammation research endeavors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma level of M-CSF was independently related to 30-day survival in patients with suspected sepsis, and correlated to pathogen load: A prospective cohort study A study on the significance of anti-endothelial cell antibodies in chronic obstructive pulmonary disease and the effect of methylprednisolone intervention A case that high doses of Vitamin C as a potential therapy for COVID-19 The value of diagnostic model on COVID-19 by Comparing the Features between SARS-COV-2 and other viral infections COVID-19 pneumonia with night sweat as the first symptom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1