全球类器官技术和产业的趋势:从培养皿中的器官生成到类器官的商业化

Hanbyeol Lee, Jeong Suk Im, Daejin Choi, Dong-Hun Woo
{"title":"全球类器官技术和产业的趋势:从培养皿中的器官生成到类器官的商业化","authors":"Hanbyeol Lee, Jeong Suk Im, Daejin Choi, Dong-Hun Woo","doi":"10.51335/organoid.2021.1.e11","DOIUrl":null,"url":null,"abstract":"Animal models have been standard methods for non-clinical research in drug development for decades. However, many drugs that have shown satisfactory results in non-clinical studies have failed in the clinical stage, presumably because animal data are not fully convertible to human data. Human organoid technology has recently been considered as an alternative to existing non-clinical testing methods, and it could potentially serve a role as a bridge from non-clinical to clinical trials, compensating for the current limitations arising from non-clinical animal models. For this reason, organoid technology is being utilized in various fields of research including academic studies, disease modeling, drug screening, biobanks, and regenerative medicine. In addition, as organoid technology progressively develops, it has been combined with bioengineering to develop applications from manufacturing to drug evaluation platforms, which is leading to a demand for commercialization of organoids for researchers. In accordance with this global trend, the organoid industry continues to grow throughout the world, and organoid research and the market for organoids have been boosted by the demand for efficient and rapid drug development in response to the coronavirus disease 2019 pandemic. In this review, we discuss recent global trends in organoid research, based on tissue types and applications, as well as the organoid market and its prospects.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids\",\"authors\":\"Hanbyeol Lee, Jeong Suk Im, Daejin Choi, Dong-Hun Woo\",\"doi\":\"10.51335/organoid.2021.1.e11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Animal models have been standard methods for non-clinical research in drug development for decades. However, many drugs that have shown satisfactory results in non-clinical studies have failed in the clinical stage, presumably because animal data are not fully convertible to human data. Human organoid technology has recently been considered as an alternative to existing non-clinical testing methods, and it could potentially serve a role as a bridge from non-clinical to clinical trials, compensating for the current limitations arising from non-clinical animal models. For this reason, organoid technology is being utilized in various fields of research including academic studies, disease modeling, drug screening, biobanks, and regenerative medicine. In addition, as organoid technology progressively develops, it has been combined with bioengineering to develop applications from manufacturing to drug evaluation platforms, which is leading to a demand for commercialization of organoids for researchers. In accordance with this global trend, the organoid industry continues to grow throughout the world, and organoid research and the market for organoids have been boosted by the demand for efficient and rapid drug development in response to the coronavirus disease 2019 pandemic. In this review, we discuss recent global trends in organoid research, based on tissue types and applications, as well as the organoid market and its prospects.\",\"PeriodicalId\":100198,\"journal\":{\"name\":\"Brain Organoid and Systems Neuroscience Journal\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Organoid and Systems Neuroscience Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51335/organoid.2021.1.e11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/organoid.2021.1.e11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

几十年来,动物模型一直是药物开发非临床研究的标准方法。然而,许多在非临床研究中表现出满意结果的药物在临床阶段失败了,大概是因为动物数据不能完全转换为人类数据。人类类器官技术最近被认为是现有非临床测试方法的一种替代方法,它有可能成为从非临床到临床试验的桥梁,弥补目前非临床动物模型的局限性。因此,类器官技术正被应用于各种研究领域,包括学术研究、疾病建模、药物筛选、生物银行和再生医学。此外,随着类器官技术的逐步发展,它已经与生物工程相结合,开发了从制造到药物评价平台的应用,这导致了研究人员对类器官商业化的需求。与这一全球趋势相一致,类器官产业在全球范围内持续增长,为应对2019年冠状病毒病大流行,对高效、快速药物开发的需求推动了类器官研究和类器官市场的发展。本文从组织类型、应用、类器官市场及前景等方面综述了近年来全球类器官研究的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids
Animal models have been standard methods for non-clinical research in drug development for decades. However, many drugs that have shown satisfactory results in non-clinical studies have failed in the clinical stage, presumably because animal data are not fully convertible to human data. Human organoid technology has recently been considered as an alternative to existing non-clinical testing methods, and it could potentially serve a role as a bridge from non-clinical to clinical trials, compensating for the current limitations arising from non-clinical animal models. For this reason, organoid technology is being utilized in various fields of research including academic studies, disease modeling, drug screening, biobanks, and regenerative medicine. In addition, as organoid technology progressively develops, it has been combined with bioengineering to develop applications from manufacturing to drug evaluation platforms, which is leading to a demand for commercialization of organoids for researchers. In accordance with this global trend, the organoid industry continues to grow throughout the world, and organoid research and the market for organoids have been boosted by the demand for efficient and rapid drug development in response to the coronavirus disease 2019 pandemic. In this review, we discuss recent global trends in organoid research, based on tissue types and applications, as well as the organoid market and its prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ageing and brain research networks in Norway StressMatic: Bridging innovation and reliability in animal models of stress Harmony in the brain: A narrative review on the shared neural substrates of emotion regulation and creativity Unravelling neuroinflammation-mediated mitochondrial dysfunction in mild cognitive impairment: Insights from targeted metabolomics Modeling Alzheimer's disease using cerebral organoids: Current challenges and prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1