2000 - 2018年波兰PM10浓度时空趋势测定与评价

Malwina Jackowska, A. Fiedukowicz, J. Gąsiorowski
{"title":"2000 - 2018年波兰PM10浓度时空趋势测定与评价","authors":"Malwina Jackowska, A. Fiedukowicz, J. Gąsiorowski","doi":"10.2478/pcr-2021-0004","DOIUrl":null,"url":null,"abstract":"Abstract Increasing amounts of rapidly growing data are the driving force behind proposing and automating new processing, enabling the extraction of useful information from data. One of such possibilities is determining trends to consider in terms of time and space. Thus far, the analysis of these aspects has been separate and lacked automated tools. Therefore, the authors proposed, implemented, and tested a tool for analyzing spatio-temporal linear trends. The tool was tested on PM10 concentration data in the years 2000–2018. The results, presented as cartographic visualization, were then evaluated, both in terms of time and space. The proposed approach facilitates analyzing spatio-temporal trends and assessing their accuracy; it can be developed using other types of analyzed trends or considering additional factors that influence the trend by using cokriging.","PeriodicalId":30929,"journal":{"name":"Polish Cartographical Review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination and evaluation of spatio-temporal trends on the example of PM10 concentration in Poland (2000−2018)\",\"authors\":\"Malwina Jackowska, A. Fiedukowicz, J. Gąsiorowski\",\"doi\":\"10.2478/pcr-2021-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Increasing amounts of rapidly growing data are the driving force behind proposing and automating new processing, enabling the extraction of useful information from data. One of such possibilities is determining trends to consider in terms of time and space. Thus far, the analysis of these aspects has been separate and lacked automated tools. Therefore, the authors proposed, implemented, and tested a tool for analyzing spatio-temporal linear trends. The tool was tested on PM10 concentration data in the years 2000–2018. The results, presented as cartographic visualization, were then evaluated, both in terms of time and space. The proposed approach facilitates analyzing spatio-temporal trends and assessing their accuracy; it can be developed using other types of analyzed trends or considering additional factors that influence the trend by using cokriging.\",\"PeriodicalId\":30929,\"journal\":{\"name\":\"Polish Cartographical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Cartographical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pcr-2021-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Cartographical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pcr-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

越来越多的快速增长的数据是提出和自动化新处理背后的驱动力,从而能够从数据中提取有用的信息。其中一种可能性是确定要考虑的时间和空间方面的趋势。到目前为止,对这些方面的分析是分开的,并且缺乏自动化的工具。因此,作者提出、实现并测试了一个分析时空线性趋势的工具。该工具对2000年至2018年的PM10浓度数据进行了测试。结果以地图可视化的形式呈现,然后在时间和空间方面进行评估。该方法有助于分析时空趋势并评估其准确性;它可以使用其他类型的分析趋势来开发,也可以使用协同克里格法考虑影响趋势的其他因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination and evaluation of spatio-temporal trends on the example of PM10 concentration in Poland (2000−2018)
Abstract Increasing amounts of rapidly growing data are the driving force behind proposing and automating new processing, enabling the extraction of useful information from data. One of such possibilities is determining trends to consider in terms of time and space. Thus far, the analysis of these aspects has been separate and lacked automated tools. Therefore, the authors proposed, implemented, and tested a tool for analyzing spatio-temporal linear trends. The tool was tested on PM10 concentration data in the years 2000–2018. The results, presented as cartographic visualization, were then evaluated, both in terms of time and space. The proposed approach facilitates analyzing spatio-temporal trends and assessing their accuracy; it can be developed using other types of analyzed trends or considering additional factors that influence the trend by using cokriging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Cartometric analysis of selected works by Leonardo da Vinci Tell me where you are and I’ll tell you what you learn. Investigating hidden curricula using GIS analysis of place names in a case study of an English language textbook published in Japan Methodology for creating dynamic emergency vehicle availability maps Post-1800 copies of Atlas Silesiae: may we talk about the second edition? The first state of Georg Freudenhammer’s map of Palatinatus Posnaniensis from 1645
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1