F. Mina, M. Beg, M. R. Islam, A. Nizam, Rosli M. Younus
{"title":"聚乳酸与多壁碳纳米管可生物降解纳米复合材料的表征","authors":"F. Mina, M. Beg, M. R. Islam, A. Nizam, Rosli M. Younus","doi":"10.5281/ZENODO.1081613","DOIUrl":null,"url":null,"abstract":"In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0−1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 10 with a low loading of MWCNTs (1.5 wt%). Keywords—Crystallization, multi-walled carbon nanotubes, nanocomposites, Poly (lactic acid).","PeriodicalId":23701,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering","volume":"35 1","pages":"74-79"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes\",\"authors\":\"F. Mina, M. Beg, M. R. Islam, A. Nizam, Rosli M. Younus\",\"doi\":\"10.5281/ZENODO.1081613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0−1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 10 with a low loading of MWCNTs (1.5 wt%). Keywords—Crystallization, multi-walled carbon nanotubes, nanocomposites, Poly (lactic acid).\",\"PeriodicalId\":23701,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering\",\"volume\":\"35 1\",\"pages\":\"74-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1081613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1081613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes
In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0−1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 10 with a low loading of MWCNTs (1.5 wt%). Keywords—Crystallization, multi-walled carbon nanotubes, nanocomposites, Poly (lactic acid).