基于传感器模型更新的铁路砌体拱桥抗震评估

Mosabreza Tajali, Shervan Ataei, A. Miri, E. Ahmadi, M. Kashani
{"title":"基于传感器模型更新的铁路砌体拱桥抗震评估","authors":"Mosabreza Tajali, Shervan Ataei, A. Miri, E. Ahmadi, M. Kashani","doi":"10.1680/jbren.22.00019","DOIUrl":null,"url":null,"abstract":"A large part of Iranian railway bridge asset comprises masonry arch bridges, which have been in service for over 70 years. Seismic assessment of such structures is of great importance, particularly for high-seismic regions. Hence, this study assesses the seismic performance of Veresk masonry arch bridge, the longest masonry arch bridge of Iranian railway network (a span length of 99 m), spanned over a valley of depth 110 m, through a reliable sensor-based model updating. Dynamic tests are carried out using a test train, composed of 6-axle locomotives and 4-axle freight wagons, which travels across the bridge, and subsequently, vibration response of the instrumented bridge is measured. A high-fidelity 3D Finite Element (FE) model of the bridge is developed and updated using the measured vibration characteristics: mid-span displacements and natural frequencies. Finally, the seismic performance assessment of the bridge is performed through non-linear static and dynamic analyses for two seismic hazard levels with return periods of 150 and 1000 years. It is found that for the hazard level with a return period of 150 years, both nonlinear static and dynamic analyses give very similar results. However, for the seismic hazard level with the return period of 1000 years, the results of the static analysis are more conservative.","PeriodicalId":44437,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Bridge Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seismic Assessment of a Railway Masonry Arch Bridge Using Sensor-Based Model Updating\",\"authors\":\"Mosabreza Tajali, Shervan Ataei, A. Miri, E. Ahmadi, M. Kashani\",\"doi\":\"10.1680/jbren.22.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large part of Iranian railway bridge asset comprises masonry arch bridges, which have been in service for over 70 years. Seismic assessment of such structures is of great importance, particularly for high-seismic regions. Hence, this study assesses the seismic performance of Veresk masonry arch bridge, the longest masonry arch bridge of Iranian railway network (a span length of 99 m), spanned over a valley of depth 110 m, through a reliable sensor-based model updating. Dynamic tests are carried out using a test train, composed of 6-axle locomotives and 4-axle freight wagons, which travels across the bridge, and subsequently, vibration response of the instrumented bridge is measured. A high-fidelity 3D Finite Element (FE) model of the bridge is developed and updated using the measured vibration characteristics: mid-span displacements and natural frequencies. Finally, the seismic performance assessment of the bridge is performed through non-linear static and dynamic analyses for two seismic hazard levels with return periods of 150 and 1000 years. It is found that for the hazard level with a return period of 150 years, both nonlinear static and dynamic analyses give very similar results. However, for the seismic hazard level with the return period of 1000 years, the results of the static analysis are more conservative.\",\"PeriodicalId\":44437,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Bridge Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Bridge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jbren.22.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Bridge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jbren.22.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

伊朗铁路桥梁资产的很大一部分是砖石拱桥,这些拱桥已经使用了70多年。这类结构的地震评价是非常重要的,特别是在高震区。因此,本研究通过可靠的基于传感器的模型更新,评估了Veresk砌体拱桥的抗震性能,Veresk砌体拱桥是伊朗铁路网中最长的砌体拱桥(跨度为99 m),横跨深度为110 m的山谷。采用由6轴机车和4轴货车组成的试验列车在桥上进行动力试验,随后测量了仪表桥的振动响应。利用测量的振动特性:跨中位移和固有频率,建立并更新了桥梁的高保真三维有限元模型。最后,通过150年和1000年两种地震危险度的非线性静力和动力分析,对桥梁进行了抗震性能评估。研究发现,对于150年的灾害重现期,非线性静态分析和动态分析的结果非常相似。但对于1000年周期的地震危险性等级,静力分析结果较为保守。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Assessment of a Railway Masonry Arch Bridge Using Sensor-Based Model Updating
A large part of Iranian railway bridge asset comprises masonry arch bridges, which have been in service for over 70 years. Seismic assessment of such structures is of great importance, particularly for high-seismic regions. Hence, this study assesses the seismic performance of Veresk masonry arch bridge, the longest masonry arch bridge of Iranian railway network (a span length of 99 m), spanned over a valley of depth 110 m, through a reliable sensor-based model updating. Dynamic tests are carried out using a test train, composed of 6-axle locomotives and 4-axle freight wagons, which travels across the bridge, and subsequently, vibration response of the instrumented bridge is measured. A high-fidelity 3D Finite Element (FE) model of the bridge is developed and updated using the measured vibration characteristics: mid-span displacements and natural frequencies. Finally, the seismic performance assessment of the bridge is performed through non-linear static and dynamic analyses for two seismic hazard levels with return periods of 150 and 1000 years. It is found that for the hazard level with a return period of 150 years, both nonlinear static and dynamic analyses give very similar results. However, for the seismic hazard level with the return period of 1000 years, the results of the static analysis are more conservative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
10.00%
发文量
48
期刊最新文献
Hybrid machine learning model for prediction of vertical deflection of composite bridges A control chart to evaluate the control effect of a bridge under active control Design of stone masonry bridges in European treatises: Part 1 – The geometrical configuration Extreme fjord-crossings development in the E39 coastal highway route project – a review The replacement of the Kosciuszko Bridge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1