Zilin Cui, Xin Zhang, Yuhong Xu, Guangjiu Lei, Heng Li, Yiqin Zhu, Jun Hu, S. Geng, Qi-jun Liu, Y. Ni, Haifeng Liu, Xianqu Wang, Jie Huang, Hai Liu, Jun Cheng, Changjian Tang
{"title":"钒掺杂对钨中氢掺入影响的第一性原理研究","authors":"Zilin Cui, Xin Zhang, Yuhong Xu, Guangjiu Lei, Heng Li, Yiqin Zhu, Jun Hu, S. Geng, Qi-jun Liu, Y. Ni, Haifeng Liu, Xianqu Wang, Jie Huang, Hai Liu, Jun Cheng, Changjian Tang","doi":"10.1002/crat.202100115","DOIUrl":null,"url":null,"abstract":"Using the first‐principles method based on the density functional theory, hydrogen diffusion, electron structure, and mechanical properties of hydrogen impurity in W15V structure are investigated in this paper. It is found that in W‐V lattice the single H atom tends to be located in the tetrahedral interstitial site nearest to V atom with the solution energy of 0.614 eV. The calculation of energy barriers shows that the V doping can be helpful to trap H atoms near the V atom. The analysis of the elastic moduli shows that the V‐alloying can decrease the strength and improve the ductility of pure W. In addition, the H impurity further enhances this situation. Besides, the effect of H impurity on pure W is greater than W15V structure. The results of this study offer a useful database for the research of W‐based alloys for plasma facing materials (PFMs).","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"29 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"First‐Principles Investigation of the Effect of Vanadium Doping on Hydrogen Incorporation in Tungsten\",\"authors\":\"Zilin Cui, Xin Zhang, Yuhong Xu, Guangjiu Lei, Heng Li, Yiqin Zhu, Jun Hu, S. Geng, Qi-jun Liu, Y. Ni, Haifeng Liu, Xianqu Wang, Jie Huang, Hai Liu, Jun Cheng, Changjian Tang\",\"doi\":\"10.1002/crat.202100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the first‐principles method based on the density functional theory, hydrogen diffusion, electron structure, and mechanical properties of hydrogen impurity in W15V structure are investigated in this paper. It is found that in W‐V lattice the single H atom tends to be located in the tetrahedral interstitial site nearest to V atom with the solution energy of 0.614 eV. The calculation of energy barriers shows that the V doping can be helpful to trap H atoms near the V atom. The analysis of the elastic moduli shows that the V‐alloying can decrease the strength and improve the ductility of pure W. In addition, the H impurity further enhances this situation. Besides, the effect of H impurity on pure W is greater than W15V structure. The results of this study offer a useful database for the research of W‐based alloys for plasma facing materials (PFMs).\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202100115\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100115","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
First‐Principles Investigation of the Effect of Vanadium Doping on Hydrogen Incorporation in Tungsten
Using the first‐principles method based on the density functional theory, hydrogen diffusion, electron structure, and mechanical properties of hydrogen impurity in W15V structure are investigated in this paper. It is found that in W‐V lattice the single H atom tends to be located in the tetrahedral interstitial site nearest to V atom with the solution energy of 0.614 eV. The calculation of energy barriers shows that the V doping can be helpful to trap H atoms near the V atom. The analysis of the elastic moduli shows that the V‐alloying can decrease the strength and improve the ductility of pure W. In addition, the H impurity further enhances this situation. Besides, the effect of H impurity on pure W is greater than W15V structure. The results of this study offer a useful database for the research of W‐based alloys for plasma facing materials (PFMs).
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing