FoxP3的阶梯状多化使微卫星识别和DNA桥接成为可能

Wenxiang Zhang, Fangwei Leng, Xi Wang, Ricardo N Ramirez, Jinseok Park, Christophe Benoist, Sun Hur
{"title":"FoxP3的阶梯状多化使微卫星识别和DNA桥接成为可能","authors":"Wenxiang Zhang, Fangwei Leng, Xi Wang, Ricardo N Ramirez, Jinseok Park, Christophe Benoist, Sun Hur","doi":"10.1101/2023.07.12.548762","DOIUrl":null,"url":null,"abstract":"<p><p>FoxP3 is a transcription factor (TF) essential for development of regulatory T cells (Tregs), a branch of T cells that suppress excessive inflammation and autoimmunity <sup>1-5</sup> . Molecular mechanisms of FoxP3, however, remain elusive. We here show that FoxP3 utilizes the Forkhead domain--a DNA binding domain (DBD) that is commonly thought to function as a monomer or dimer--to form a higher-order multimer upon binding to T <sub>n</sub> G repeat microsatellites. A cryo-electron microscopy structure of FoxP3 in complex with T <sub>3</sub> G repeats reveals a ladder-like architecture, where two double-stranded DNA molecules form the two \"side rails\" bridged by five pairs of FoxP3 molecules, with each pair forming a \"rung\". Each FoxP3 subunit occupies TGTTTGT within the repeats in the manner indistinguishable from that of FoxP3 bound to the Forkhead consensus motif (FKHM; TGTTTAC). Mutations in the \"intra-rung\" interface impair T <sub>n</sub> G repeat recognition, DNA bridging and cellular functions of FoxP3, all without affecting FKHM binding. FoxP3 can tolerate variable \"inter-rung\" spacings, explaining its broad specificity for T <sub>n</sub> G repeat-like sequences <i>in vivo</i> and <i>in vitro</i> . Both FoxP3 orthologs and paralogs show similar T <sub>n</sub> G repeat recognition and DNA bridging. These findings thus reveal a new mode of DNA recognition that involves TF homo-multimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.</p>","PeriodicalId":9213,"journal":{"name":"Botanical Gazette","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659269/pdf/","citationCount":"0","resultStr":"{\"title\":\"FoxP3 recognizes microsatellites and bridges DNA through multimerization.\",\"authors\":\"Wenxiang Zhang, Fangwei Leng, Xi Wang, Ricardo N Ramirez, Jinseok Park, Christophe Benoist, Sun Hur\",\"doi\":\"10.1101/2023.07.12.548762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>FoxP3 is a transcription factor (TF) essential for development of regulatory T cells (Tregs), a branch of T cells that suppress excessive inflammation and autoimmunity <sup>1-5</sup> . Molecular mechanisms of FoxP3, however, remain elusive. We here show that FoxP3 utilizes the Forkhead domain--a DNA binding domain (DBD) that is commonly thought to function as a monomer or dimer--to form a higher-order multimer upon binding to T <sub>n</sub> G repeat microsatellites. A cryo-electron microscopy structure of FoxP3 in complex with T <sub>3</sub> G repeats reveals a ladder-like architecture, where two double-stranded DNA molecules form the two \\\"side rails\\\" bridged by five pairs of FoxP3 molecules, with each pair forming a \\\"rung\\\". Each FoxP3 subunit occupies TGTTTGT within the repeats in the manner indistinguishable from that of FoxP3 bound to the Forkhead consensus motif (FKHM; TGTTTAC). Mutations in the \\\"intra-rung\\\" interface impair T <sub>n</sub> G repeat recognition, DNA bridging and cellular functions of FoxP3, all without affecting FKHM binding. FoxP3 can tolerate variable \\\"inter-rung\\\" spacings, explaining its broad specificity for T <sub>n</sub> G repeat-like sequences <i>in vivo</i> and <i>in vitro</i> . Both FoxP3 orthologs and paralogs show similar T <sub>n</sub> G repeat recognition and DNA bridging. These findings thus reveal a new mode of DNA recognition that involves TF homo-multimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.</p>\",\"PeriodicalId\":9213,\"journal\":{\"name\":\"Botanical Gazette\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botanical Gazette\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.07.12.548762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.07.12.548762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

FoxP3是调节性T细胞(Tregs)发育所必需的转录因子(TF), Tregs是T细胞的一个分支,可抑制过度炎症和自身免疫1 - 5。然而,FoxP3的分子机制仍然难以捉摸。我们在这里表明,FoxP3利用叉头结构域——一种通常被认为是单体或二聚体的DNA结合结构域(DBD)——在与TnG重复微卫星结合时形成高阶多聚体。FoxP3与T3G重复序列复合物的低温电子显微镜结构揭示了一个阶梯状结构,其中两个双链DNA分子形成两个“侧轨”,五对FoxP3分子形成“梯级”。每个FoxP3亚基在重复序列中占据TGTTTGT,其方式与FoxP3结合到叉头共识基序(FKHM;TGTTTAC)。“环内”界面的突变破坏TnG重复识别、DNA桥接和FoxP3的细胞功能,而不影响FKHM结合。FoxP3可以耐受可变的“环间”间隔,这解释了它在体内和体外对TnG重复样序列的广泛特异性。FoxP3同源基因和相似基因均表现出相似的TnG重复识别和DNA桥接。因此,这些发现揭示了一种涉及TF同源多聚和DNA桥接的DNA识别新模式,并进一步揭示了微卫星在转录调控和疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FoxP3 recognizes microsatellites and bridges DNA through multimerization.

FoxP3 is a transcription factor (TF) essential for development of regulatory T cells (Tregs), a branch of T cells that suppress excessive inflammation and autoimmunity 1-5 . Molecular mechanisms of FoxP3, however, remain elusive. We here show that FoxP3 utilizes the Forkhead domain--a DNA binding domain (DBD) that is commonly thought to function as a monomer or dimer--to form a higher-order multimer upon binding to T n G repeat microsatellites. A cryo-electron microscopy structure of FoxP3 in complex with T 3 G repeats reveals a ladder-like architecture, where two double-stranded DNA molecules form the two "side rails" bridged by five pairs of FoxP3 molecules, with each pair forming a "rung". Each FoxP3 subunit occupies TGTTTGT within the repeats in the manner indistinguishable from that of FoxP3 bound to the Forkhead consensus motif (FKHM; TGTTTAC). Mutations in the "intra-rung" interface impair T n G repeat recognition, DNA bridging and cellular functions of FoxP3, all without affecting FKHM binding. FoxP3 can tolerate variable "inter-rung" spacings, explaining its broad specificity for T n G repeat-like sequences in vivo and in vitro . Both FoxP3 orthologs and paralogs show similar T n G repeat recognition and DNA bridging. These findings thus reveal a new mode of DNA recognition that involves TF homo-multimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FoxP3 recognizes microsatellites and bridges DNA through multimerization. Understanding the Link between COVID-19 and HIV/AIDS Stigmas. National epidemiological analysis of the association of COVID-19 vaccination and incidence of COVID-19 cases in Canada, January to August 2021. Utility of a fulcrum for positioning support during flexion-extension radiographs for assessment of lumbar instability in patients with degenerative lumbar spondylolisthesis. Eucalyptus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1