基于MapReduce的天文数据应用研究

Qingfa Cui, Sheng-Chuan Wu
{"title":"基于MapReduce的天文数据应用研究","authors":"Qingfa Cui, Sheng-Chuan Wu","doi":"10.1109/IAEAC.2018.8577233","DOIUrl":null,"url":null,"abstract":"MapReduce as an abstract distributed computing programming model could solve the issues of parallel computing, such as load balancing, network storage, data distribution, resource allocation, fault tolerance. This makes it easy for people to manipulate large scale cluster systems without considering hardware details. The paper discusses completely how to apply MapReduce. In the construction of the experimental platform, this paper successfully designs and implements the cone search service based on MapReduce, The final result proves that the astronomical data application method based on MapReduce greatly improves the processing capacity.","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"31 1","pages":"2345-2348"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Astronomical Data Application Research Based on MapReduce\",\"authors\":\"Qingfa Cui, Sheng-Chuan Wu\",\"doi\":\"10.1109/IAEAC.2018.8577233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MapReduce as an abstract distributed computing programming model could solve the issues of parallel computing, such as load balancing, network storage, data distribution, resource allocation, fault tolerance. This makes it easy for people to manipulate large scale cluster systems without considering hardware details. The paper discusses completely how to apply MapReduce. In the construction of the experimental platform, this paper successfully designs and implements the cone search service based on MapReduce, The final result proves that the astronomical data application method based on MapReduce greatly improves the processing capacity.\",\"PeriodicalId\":6573,\"journal\":{\"name\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"31 1\",\"pages\":\"2345-2348\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2018.8577233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

MapReduce作为一种抽象的分布式计算编程模型,可以解决并行计算中的负载均衡、网络存储、数据分布、资源分配、容错等问题。这使得人们可以轻松地操作大规模集群系统,而无需考虑硬件细节。本文对MapReduce的应用进行了全面的论述。在实验平台的搭建中,本文成功地设计并实现了基于MapReduce的圆锥搜索服务,最终结果证明基于MapReduce的天文数据应用方法大大提高了处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Astronomical Data Application Research Based on MapReduce
MapReduce as an abstract distributed computing programming model could solve the issues of parallel computing, such as load balancing, network storage, data distribution, resource allocation, fault tolerance. This makes it easy for people to manipulate large scale cluster systems without considering hardware details. The paper discusses completely how to apply MapReduce. In the construction of the experimental platform, this paper successfully designs and implements the cone search service based on MapReduce, The final result proves that the astronomical data application method based on MapReduce greatly improves the processing capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent module for recognizing emotions by voice Modeling of thermophysiological state of man Intelligent support system for agro-technological decisions for sowing fields Analysis of visual object tracking algorithms for real-time systems Choosing the best parameters for method of deformed stars in n-dimensional space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1