天然钽核嬗变生产高纯铼-185的可行性研究

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-09-01 DOI:10.3390/jne4030039
Yuki Tanoue, Tsugio Yokoyama, Masaki Ozawa
{"title":"天然钽核嬗变生产高纯铼-185的可行性研究","authors":"Yuki Tanoue, Tsugio Yokoyama, Masaki Ozawa","doi":"10.3390/jne4030039","DOIUrl":null,"url":null,"abstract":"Rhenium-186 (Re-186) has attracted attention as a medical isotope. The feasibility of producing Re-185, the raw material for Re-186, using a fast reactor was evaluated using a continuous energy Monte Carlo code. The irradiation of natural tantalum (Ta) in the fast reactor can produce Re-185 with an isotopic purity of 99%. A two-step irradiation process with different moderators was found to improve the production rate of Re-185. Specifically, this can be achieved by using zirconium hydride (ZrH1.7) as a moderator in the first transmutation process from natural Ta to tungsten (W), and then zirconium deuteride (ZrD1.7) as a moderator in the second transmutation process from W to Re-185. Due to the two-step irradiation, the production rate of Re-185 from Ta can be increased up to a maximum of 470 times compared with irradiation without a moderator, and 2.3 g of Re-185 can be obtained from 1571 g of Ta in 1 year of irradiation. The proposed isotope production method is a new method that is different from the conventional electromagnetic enrichment process.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility Study on Production of High-Purity Rhenium-185 by Nuclear Transmutation of Natural Tantalum\",\"authors\":\"Yuki Tanoue, Tsugio Yokoyama, Masaki Ozawa\",\"doi\":\"10.3390/jne4030039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rhenium-186 (Re-186) has attracted attention as a medical isotope. The feasibility of producing Re-185, the raw material for Re-186, using a fast reactor was evaluated using a continuous energy Monte Carlo code. The irradiation of natural tantalum (Ta) in the fast reactor can produce Re-185 with an isotopic purity of 99%. A two-step irradiation process with different moderators was found to improve the production rate of Re-185. Specifically, this can be achieved by using zirconium hydride (ZrH1.7) as a moderator in the first transmutation process from natural Ta to tungsten (W), and then zirconium deuteride (ZrD1.7) as a moderator in the second transmutation process from W to Re-185. Due to the two-step irradiation, the production rate of Re-185 from Ta can be increased up to a maximum of 470 times compared with irradiation without a moderator, and 2.3 g of Re-185 can be obtained from 1571 g of Ta in 1 year of irradiation. The proposed isotope production method is a new method that is different from the conventional electromagnetic enrichment process.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jne4030039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne4030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铼-186 (Re-186)作为一种医用同位素备受关注。利用连续能量蒙特卡罗程序对快中子反应堆生产Re-186原料Re-185的可行性进行了评估。在快堆中辐照天然钽(Ta)可产生同位素纯度为99%的Re-185。采用两步辐照工艺,采用不同的慢化剂可提高Re-185的收率。具体来说,这可以通过氢化锆(ZrH1.7)作为从天然Ta到钨(W)的第一次嬗变过程的慢化剂,然后氘化锆(ZrD1.7)作为从W到Re-185的第二次嬗变过程的慢化剂来实现。由于采用了两步辐照,与不加慢化剂的辐照相比,Ta产生Re-185的速率最多可提高470倍,在1年的辐照中,1571 g Ta可产生2.3 g Re-185。提出的同位素生产方法是一种不同于传统电磁富集方法的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility Study on Production of High-Purity Rhenium-185 by Nuclear Transmutation of Natural Tantalum
Rhenium-186 (Re-186) has attracted attention as a medical isotope. The feasibility of producing Re-185, the raw material for Re-186, using a fast reactor was evaluated using a continuous energy Monte Carlo code. The irradiation of natural tantalum (Ta) in the fast reactor can produce Re-185 with an isotopic purity of 99%. A two-step irradiation process with different moderators was found to improve the production rate of Re-185. Specifically, this can be achieved by using zirconium hydride (ZrH1.7) as a moderator in the first transmutation process from natural Ta to tungsten (W), and then zirconium deuteride (ZrD1.7) as a moderator in the second transmutation process from W to Re-185. Due to the two-step irradiation, the production rate of Re-185 from Ta can be increased up to a maximum of 470 times compared with irradiation without a moderator, and 2.3 g of Re-185 can be obtained from 1571 g of Ta in 1 year of irradiation. The proposed isotope production method is a new method that is different from the conventional electromagnetic enrichment process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
期刊最新文献
Estimation of Turbulent Mixing Factor and Study of Turbulent Flow Structures in PWR Sub Channel by DNS Effect of Radial Neutron Reflector on the Characteristics of Nuclear Fuel Burn-up Wave in a Fast Neutron Energy Spectrum Multiplying Medium: A Consistent Parametric Approach Reviewing Welding Procedures - Checklists for Nuclear Power Systems Performance of NB-CTMFD detector vs Ludlum 42-49B, and Fuji NSN3 detectors for hard (Am-Be) and soft (Cf-252 fission) energy spectra neutron sources within lead/concrete shielded configurations Performance of B-CTMFD Detector Vs Ludlum 42-49B, Fuji NSN3 Detectors for Fission Energy Spectrum Neutron Detection with the Source within Lead/concrete Shielded Configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1