迈向更可靠的预测:混合证据电影推荐系统

Raoua Abdelkhalek, I. Boukhris, Zied Elouedi
{"title":"迈向更可靠的预测:混合证据电影推荐系统","authors":"Raoua Abdelkhalek, I. Boukhris, Zied Elouedi","doi":"10.3897/jucs.79777","DOIUrl":null,"url":null,"abstract":"Recommender Systems (RSs) are considered as popular tools that have revolutionized the e-commerce and digital marketing. Their main goal is predicting the users’ future preferences and providing accessible and personalized recommendations. However, uncertainty can spread at any level throughout the recommendation process, which may affect the results. In fact, the ratings given by the users are often unreliable. The final provided predictions itself may also be pervaded with uncertainty and doubt. Obviously, the reliability of the predictions cannot be fully certain and trustworthy. For the system to be effective, recommendations must inspire trust in the system and provide reliable and credible recommendations. The user may speculate about the uncertainty pervaded behind the given recommendation. He could tend to a reliable recommendation offering him a global overview about his preferences rather than an inappropriate one that contradicts his activities and objectives. While such imperfection cannot be ignored, traditional RSs are rarely able to deal with the uncertainty spreading around the prediction process, which may affect the credibility, the transparency and the trustworthiness of the current RS. Thus, in this paper, we opt for the uncertain framework of the belief function theory (BFT), which allows us to represent, quantify and manage imperfect evidence. By using the BFT, the users’ preferences and the interactions between the neighbors can be represented under uncertainty. Evidence from different information sources can then be combined leading to more reliable results. The proposed approach is a hybrid evidential movie RS that uses different data sources and delivers a personalized user-interface allowing a global overview of the possible future preferences. This representation would increase the users’ confidence towards the system as well as their satisfaction. Experiments are performed on MovieLens and their additional features provided by the Internet Movie Database (IMDb) and Rotten Tomatoes. The new approach achieves promising results compared to traditional approaches in terms of MAE, NMAE and RMSE. It also reaches interesting Precision, Recall and F-measure values of respectively, 0.782, 0.792 and 0.787.","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"15 1","pages":"1003-1029"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards more trustworthy predictions: A hybrid evidential movie recommender system\",\"authors\":\"Raoua Abdelkhalek, I. Boukhris, Zied Elouedi\",\"doi\":\"10.3897/jucs.79777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender Systems (RSs) are considered as popular tools that have revolutionized the e-commerce and digital marketing. Their main goal is predicting the users’ future preferences and providing accessible and personalized recommendations. However, uncertainty can spread at any level throughout the recommendation process, which may affect the results. In fact, the ratings given by the users are often unreliable. The final provided predictions itself may also be pervaded with uncertainty and doubt. Obviously, the reliability of the predictions cannot be fully certain and trustworthy. For the system to be effective, recommendations must inspire trust in the system and provide reliable and credible recommendations. The user may speculate about the uncertainty pervaded behind the given recommendation. He could tend to a reliable recommendation offering him a global overview about his preferences rather than an inappropriate one that contradicts his activities and objectives. While such imperfection cannot be ignored, traditional RSs are rarely able to deal with the uncertainty spreading around the prediction process, which may affect the credibility, the transparency and the trustworthiness of the current RS. Thus, in this paper, we opt for the uncertain framework of the belief function theory (BFT), which allows us to represent, quantify and manage imperfect evidence. By using the BFT, the users’ preferences and the interactions between the neighbors can be represented under uncertainty. Evidence from different information sources can then be combined leading to more reliable results. The proposed approach is a hybrid evidential movie RS that uses different data sources and delivers a personalized user-interface allowing a global overview of the possible future preferences. This representation would increase the users’ confidence towards the system as well as their satisfaction. Experiments are performed on MovieLens and their additional features provided by the Internet Movie Database (IMDb) and Rotten Tomatoes. The new approach achieves promising results compared to traditional approaches in terms of MAE, NMAE and RMSE. It also reaches interesting Precision, Recall and F-measure values of respectively, 0.782, 0.792 and 0.787.\",\"PeriodicalId\":14652,\"journal\":{\"name\":\"J. Univers. Comput. Sci.\",\"volume\":\"15 1\",\"pages\":\"1003-1029\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Univers. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/jucs.79777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Univers. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/jucs.79777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统(RSs)被认为是一种流行的工具,它彻底改变了电子商务和数字营销。他们的主要目标是预测用户未来的偏好,并提供可访问和个性化的推荐。然而,在整个推荐过程中,不确定性可能在任何层面蔓延,这可能会影响结果。事实上,用户给出的评分往往是不可靠的。最终提供的预测本身也可能充满不确定性和怀疑。显然,预测的可靠性不能完全确定和可信。为了使制度有效,建议必须激发人们对制度的信任,并提供可靠和可信的建议。用户可能会推测给定推荐背后的不确定性。他可能倾向于一个可靠的建议,让他对自己的偏好有一个全面的了解,而不是一个与他的活动和目标相矛盾的不合适的建议。虽然这种不完全性不容忽视,但传统的RSs很少能够处理围绕预测过程传播的不确定性,这可能会影响当前RS的可信度、透明度和可信度。因此,在本文中,我们选择了信念函数理论(BFT)的不确定性框架,它允许我们表示、量化和管理不完全性证据。利用BFT可以在不确定的情况下表示用户的偏好和邻居之间的交互。然后,可以将来自不同信息来源的证据结合起来,得出更可靠的结果。提出的方法是一种混合证据电影RS,它使用不同的数据源,并提供个性化的用户界面,允许对未来可能的偏好进行全局概述。这样可以增加用户对系统的信心和满意度。实验是在互联网电影数据库(IMDb)和烂番茄提供的MovieLens及其附加功能上进行的。与传统方法相比,该方法在MAE、NMAE和RMSE方面取得了令人满意的结果。它也达到了有趣的精度,召回率和f测量值分别为0.782,0.792和0.787。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards more trustworthy predictions: A hybrid evidential movie recommender system
Recommender Systems (RSs) are considered as popular tools that have revolutionized the e-commerce and digital marketing. Their main goal is predicting the users’ future preferences and providing accessible and personalized recommendations. However, uncertainty can spread at any level throughout the recommendation process, which may affect the results. In fact, the ratings given by the users are often unreliable. The final provided predictions itself may also be pervaded with uncertainty and doubt. Obviously, the reliability of the predictions cannot be fully certain and trustworthy. For the system to be effective, recommendations must inspire trust in the system and provide reliable and credible recommendations. The user may speculate about the uncertainty pervaded behind the given recommendation. He could tend to a reliable recommendation offering him a global overview about his preferences rather than an inappropriate one that contradicts his activities and objectives. While such imperfection cannot be ignored, traditional RSs are rarely able to deal with the uncertainty spreading around the prediction process, which may affect the credibility, the transparency and the trustworthiness of the current RS. Thus, in this paper, we opt for the uncertain framework of the belief function theory (BFT), which allows us to represent, quantify and manage imperfect evidence. By using the BFT, the users’ preferences and the interactions between the neighbors can be represented under uncertainty. Evidence from different information sources can then be combined leading to more reliable results. The proposed approach is a hybrid evidential movie RS that uses different data sources and delivers a personalized user-interface allowing a global overview of the possible future preferences. This representation would increase the users’ confidence towards the system as well as their satisfaction. Experiments are performed on MovieLens and their additional features provided by the Internet Movie Database (IMDb) and Rotten Tomatoes. The new approach achieves promising results compared to traditional approaches in terms of MAE, NMAE and RMSE. It also reaches interesting Precision, Recall and F-measure values of respectively, 0.782, 0.792 and 0.787.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Code-Mixed Text: A Comprehensive Review Mobile Handoff with 6LoWPAN Neighbour Discovery Auxiliary Communication A Proposal of Naturalistic Software Development Method Recommendation of Machine Learning Techniques for Software Effort Estimation using Multi-Criteria Decision Making Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1