云计算环境下ECB框架中K-means聚类的实现

Stobak Dutta, S. Sengupta
{"title":"云计算环境下ECB框架中K-means聚类的实现","authors":"Stobak Dutta, S. Sengupta","doi":"10.1109/CONFLUENCE.2017.7943165","DOIUrl":null,"url":null,"abstract":"In today's scenario Cloud computing technology has emerged to manage large data sets efficiently. Large amount of data is created everyday now a days hence there is a demand of running data mining algorithm on very large data sets. As there is recent fast increase in number of clouds and their services Cloud computing technology has gained more importance. To perform data mining it is required to merge distributed data and perform mining algorithm in it. This paper presents a way to implement K-Means clustering algorithm for service discovery in the Enterprise Cloud Bus architecture.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"9 1","pages":"293-297"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of K-means clustering in ECB framework of cloud computing environment\",\"authors\":\"Stobak Dutta, S. Sengupta\",\"doi\":\"10.1109/CONFLUENCE.2017.7943165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's scenario Cloud computing technology has emerged to manage large data sets efficiently. Large amount of data is created everyday now a days hence there is a demand of running data mining algorithm on very large data sets. As there is recent fast increase in number of clouds and their services Cloud computing technology has gained more importance. To perform data mining it is required to merge distributed data and perform mining algorithm in it. This paper presents a way to implement K-Means clustering algorithm for service discovery in the Enterprise Cloud Bus architecture.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"9 1\",\"pages\":\"293-297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在今天的场景中,云计算技术的出现是为了有效地管理大型数据集。现在每天都有大量的数据产生,因此需要在非常大的数据集上运行数据挖掘算法。随着近年来云计算及其服务数量的快速增长,云计算技术变得越来越重要。为了进行数据挖掘,需要对分布式数据进行合并,并在其中执行挖掘算法。本文提出了一种在企业云总线架构中实现K-Means聚类算法用于服务发现的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of K-means clustering in ECB framework of cloud computing environment
In today's scenario Cloud computing technology has emerged to manage large data sets efficiently. Large amount of data is created everyday now a days hence there is a demand of running data mining algorithm on very large data sets. As there is recent fast increase in number of clouds and their services Cloud computing technology has gained more importance. To perform data mining it is required to merge distributed data and perform mining algorithm in it. This paper presents a way to implement K-Means clustering algorithm for service discovery in the Enterprise Cloud Bus architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1