等离子体功能化的体积印刷柔性电子产品

T. Claypole, Andrew Claypole, J. Claypole, Sarah-Jane Potts, T. Mortensen
{"title":"等离子体功能化的体积印刷柔性电子产品","authors":"T. Claypole, Andrew Claypole, J. Claypole, Sarah-Jane Potts, T. Mortensen","doi":"10.1109/IFETC.2018.8583972","DOIUrl":null,"url":null,"abstract":"GNP (Graphene Nano Platelets) have the potential to create cost-effective electronic inks for a wide range of volume printed applications. However, in common with other nano carbons these are inherently inert making it difficult to bond and disperse. While some naturally occurring functional groups, such as oxygen, ethers, carboxyls or hydroxyls, are attached to the raw GNP, adding to or modifying these chemical groups, in a controlled fashion can exfoliate sheets, improve consistency and enable tailored interactions. It also enhances particle separation and improves dispersion, which are key factors for the manufacture of functional inks. This also enables the formulation of functional inks for applications such as printed electronics, sensors, energy storage, smart packaging and wearable technology.A low temperature, dry plasma process based on tumbling nano materials through a plasma has the capability to add a range of functional groups in a high volume scalable process. The functional groups added depend on the plasma gas with the quantity dependent on the processing time. It has been postulated that the functional groups attach to the edge of the graphene sheets and at defect sites. In order to gain insight into the location and the nature of the attachment of the chemical groups, Scanning Transmitting Electron Microscope (STEM) was used to study the atomic structures of the functionalised GNP’s. This confirmed that the various functional groups had attached to the edge of the graphene sheets. The number of layers towards the centre of the GNP meant it was not possible to identify whether there were also loosely bonded groups attached to the surface or chemically bonded to defects.Further insight into the effect of the functionalisation was gained by formulating inks to study the rheology of the ink and printability. Model inks were created with GNPs with different functional groups. A combination of rheological measures, including constant shear, Small Amplitude Oscillatory Shear (SAOS) and Controlled Stress Parallel Superposition (CSPS), were used to establish the relationships between carbon loading, functionalisation and printability. These techniques also have potential applications for ink quality assurance and formulation.Inks with properties ranging from flexible conductive inks to pressure sensing inks were made by adding carbon black and graphite. These can be printed over large areas using conventional processes such screen printing, flexography and roller coating. The performance was dependent on the blend of nano carbons and the other components in the ink. Triple roll milling was used to homogenise the ink. The high shear forces this induces causes further exfoliation of some of the GNP’s, leading to inks containing a mix of graphene, FLG and GNP’s. Screen printable conductive and pressure sensor inks have been created. The latter has unique properties as it is sensitive in one direction only which enables the creation of very large area pressure sensor arrays.","PeriodicalId":6609,"journal":{"name":"2018 International Flexible Electronics Technology Conference (IFETC)","volume":"59 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma Functionalised GNP for Volume Printed Flexible Electronics\",\"authors\":\"T. Claypole, Andrew Claypole, J. Claypole, Sarah-Jane Potts, T. Mortensen\",\"doi\":\"10.1109/IFETC.2018.8583972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GNP (Graphene Nano Platelets) have the potential to create cost-effective electronic inks for a wide range of volume printed applications. However, in common with other nano carbons these are inherently inert making it difficult to bond and disperse. While some naturally occurring functional groups, such as oxygen, ethers, carboxyls or hydroxyls, are attached to the raw GNP, adding to or modifying these chemical groups, in a controlled fashion can exfoliate sheets, improve consistency and enable tailored interactions. It also enhances particle separation and improves dispersion, which are key factors for the manufacture of functional inks. This also enables the formulation of functional inks for applications such as printed electronics, sensors, energy storage, smart packaging and wearable technology.A low temperature, dry plasma process based on tumbling nano materials through a plasma has the capability to add a range of functional groups in a high volume scalable process. The functional groups added depend on the plasma gas with the quantity dependent on the processing time. It has been postulated that the functional groups attach to the edge of the graphene sheets and at defect sites. In order to gain insight into the location and the nature of the attachment of the chemical groups, Scanning Transmitting Electron Microscope (STEM) was used to study the atomic structures of the functionalised GNP’s. This confirmed that the various functional groups had attached to the edge of the graphene sheets. The number of layers towards the centre of the GNP meant it was not possible to identify whether there were also loosely bonded groups attached to the surface or chemically bonded to defects.Further insight into the effect of the functionalisation was gained by formulating inks to study the rheology of the ink and printability. Model inks were created with GNPs with different functional groups. A combination of rheological measures, including constant shear, Small Amplitude Oscillatory Shear (SAOS) and Controlled Stress Parallel Superposition (CSPS), were used to establish the relationships between carbon loading, functionalisation and printability. These techniques also have potential applications for ink quality assurance and formulation.Inks with properties ranging from flexible conductive inks to pressure sensing inks were made by adding carbon black and graphite. These can be printed over large areas using conventional processes such screen printing, flexography and roller coating. The performance was dependent on the blend of nano carbons and the other components in the ink. Triple roll milling was used to homogenise the ink. The high shear forces this induces causes further exfoliation of some of the GNP’s, leading to inks containing a mix of graphene, FLG and GNP’s. Screen printable conductive and pressure sensor inks have been created. The latter has unique properties as it is sensitive in one direction only which enables the creation of very large area pressure sensor arrays.\",\"PeriodicalId\":6609,\"journal\":{\"name\":\"2018 International Flexible Electronics Technology Conference (IFETC)\",\"volume\":\"59 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Flexible Electronics Technology Conference (IFETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFETC.2018.8583972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC.2018.8583972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

GNP(石墨烯纳米薄片)有潜力为广泛的批量印刷应用创造具有成本效益的电子墨水。然而,与其他纳米碳一样,这些纳米碳本身是惰性的,因此难以粘合和分散。虽然一些天然存在的官能团,如氧、醚、羧基或羟基,附着在原始GNP上,但以一种可控的方式添加或修改这些化学基团,可以剥离薄片,提高一致性并使其能够进行适当的相互作用。它还可以增强颗粒分离和改善分散性,这是制造功能油墨的关键因素。这也为印刷电子、传感器、能源存储、智能包装和可穿戴技术等应用提供了功能油墨的配方。低温、干燥等离子体工艺基于通过等离子体翻滚的纳米材料,能够在大批量可扩展的工艺中添加一系列官能团。添加的官能团取决于等离子体气体,其数量取决于处理时间。假设官能团附着在石墨烯片的边缘和缺陷位置。为了深入了解化学基团的附着位置和性质,使用扫描透射电子显微镜(STEM)研究了功能化GNP的原子结构。这证实了各种官能团已经附着在石墨烯片的边缘。国民生产总值中心的层数意味着不可能确定是否也有松散结合的基团附着在表面或化学结合到缺陷上。通过配方油墨来研究油墨的流变性和可印刷性,进一步深入了解了功能化的影响。用具有不同官能团的GNPs制作模型油墨。流变测量的组合,包括恒定剪切、小振幅振荡剪切(SAOS)和可控应力平行叠加(CSPS),被用来建立碳负载、功能化和可印刷性之间的关系。这些技术在油墨质量保证和配方方面也有潜在的应用。通过添加炭黑和石墨,制成了从柔性导电油墨到压力传感油墨的各种性能的油墨。这些可以用丝网印刷、柔版印刷和滚筒涂布等传统工艺大面积印刷。性能取决于纳米碳和油墨中其他成分的混合。采用三辊磨浆使油墨均匀化。这引起的高剪切力导致一些GNP的进一步剥离,导致油墨含有石墨烯,FLG和GNP的混合物。丝网印刷导电和压力传感器油墨已被创造。后者具有独特的特性,因为它只在一个方向上敏感,这使得创建非常大面积的压力传感器阵列成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma Functionalised GNP for Volume Printed Flexible Electronics
GNP (Graphene Nano Platelets) have the potential to create cost-effective electronic inks for a wide range of volume printed applications. However, in common with other nano carbons these are inherently inert making it difficult to bond and disperse. While some naturally occurring functional groups, such as oxygen, ethers, carboxyls or hydroxyls, are attached to the raw GNP, adding to or modifying these chemical groups, in a controlled fashion can exfoliate sheets, improve consistency and enable tailored interactions. It also enhances particle separation and improves dispersion, which are key factors for the manufacture of functional inks. This also enables the formulation of functional inks for applications such as printed electronics, sensors, energy storage, smart packaging and wearable technology.A low temperature, dry plasma process based on tumbling nano materials through a plasma has the capability to add a range of functional groups in a high volume scalable process. The functional groups added depend on the plasma gas with the quantity dependent on the processing time. It has been postulated that the functional groups attach to the edge of the graphene sheets and at defect sites. In order to gain insight into the location and the nature of the attachment of the chemical groups, Scanning Transmitting Electron Microscope (STEM) was used to study the atomic structures of the functionalised GNP’s. This confirmed that the various functional groups had attached to the edge of the graphene sheets. The number of layers towards the centre of the GNP meant it was not possible to identify whether there were also loosely bonded groups attached to the surface or chemically bonded to defects.Further insight into the effect of the functionalisation was gained by formulating inks to study the rheology of the ink and printability. Model inks were created with GNPs with different functional groups. A combination of rheological measures, including constant shear, Small Amplitude Oscillatory Shear (SAOS) and Controlled Stress Parallel Superposition (CSPS), were used to establish the relationships between carbon loading, functionalisation and printability. These techniques also have potential applications for ink quality assurance and formulation.Inks with properties ranging from flexible conductive inks to pressure sensing inks were made by adding carbon black and graphite. These can be printed over large areas using conventional processes such screen printing, flexography and roller coating. The performance was dependent on the blend of nano carbons and the other components in the ink. Triple roll milling was used to homogenise the ink. The high shear forces this induces causes further exfoliation of some of the GNP’s, leading to inks containing a mix of graphene, FLG and GNP’s. Screen printable conductive and pressure sensor inks have been created. The latter has unique properties as it is sensitive in one direction only which enables the creation of very large area pressure sensor arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inkjet Printed Hybrid Organic-Quantum Dots Solar Cells: Effects of Pre- And Post-Printing Activities Fabrication and Performance Evaluation of Carbon-based Stretchable RFID Tags on Textile Substrates 0–3 Polymer/Barium Titanate Nano Structures Based Flexible Piezoelectric Film A Versatile Low Temperature Curing Molecular Silver Ink Platform for Printed Electronics Screen Printed Vias for a Flexible Energy Harvesting and Storage Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1