通过现实场景培养联邦学习生态系统的可信度

Inf. Comput. Pub Date : 2023-06-16 DOI:10.3390/info14060342
A. Psaltis, Kassiani Zafeirouli, P. Leskovský, S. Bourou, Juan Camilo Vásquez-Correa, Aitor García-Pablos, S. C. Sánchez, A. Dimou, C. Patrikakis, P. Daras
{"title":"通过现实场景培养联邦学习生态系统的可信度","authors":"A. Psaltis, Kassiani Zafeirouli, P. Leskovský, S. Bourou, Juan Camilo Vásquez-Correa, Aitor García-Pablos, S. C. Sánchez, A. Dimou, C. Patrikakis, P. Daras","doi":"10.3390/info14060342","DOIUrl":null,"url":null,"abstract":"The present study thoroughly evaluates the most common blocking challenges faced by the federated learning (FL) ecosystem and analyzes existing state-of-the-art solutions. A system adaptation pipeline is designed to enable the integration of different AI-based tools in the FL system, while FL training is conducted under realistic conditions using a distributed hardware infrastructure. The suggested pipeline and FL system’s robustness are tested against challenges related to tool deployment, data heterogeneity, and privacy attacks for multiple tasks and data types. A representative set of AI-based tools and related datasets have been selected to cover several validation cases and distributed to each edge device to closely reflect real-world scenarios. The study presents significant outcomes of the experiments and analyzes the models’ performance under different realistic FL conditions, while highlighting potential limitations and issues that occurred during the FL process.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fostering Trustworthiness of Federated Learning Ecosystem through Realistic Scenarios\",\"authors\":\"A. Psaltis, Kassiani Zafeirouli, P. Leskovský, S. Bourou, Juan Camilo Vásquez-Correa, Aitor García-Pablos, S. C. Sánchez, A. Dimou, C. Patrikakis, P. Daras\",\"doi\":\"10.3390/info14060342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study thoroughly evaluates the most common blocking challenges faced by the federated learning (FL) ecosystem and analyzes existing state-of-the-art solutions. A system adaptation pipeline is designed to enable the integration of different AI-based tools in the FL system, while FL training is conducted under realistic conditions using a distributed hardware infrastructure. The suggested pipeline and FL system’s robustness are tested against challenges related to tool deployment, data heterogeneity, and privacy attacks for multiple tasks and data types. A representative set of AI-based tools and related datasets have been selected to cover several validation cases and distributed to each edge device to closely reflect real-world scenarios. The study presents significant outcomes of the experiments and analyzes the models’ performance under different realistic FL conditions, while highlighting potential limitations and issues that occurred during the FL process.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14060342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14060342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究全面评估了联邦学习(FL)生态系统面临的最常见的阻塞挑战,并分析了现有的最先进的解决方案。设计了一个系统适应管道,以便在FL系统中集成不同的基于ai的工具,同时使用分布式硬件基础设施在现实条件下进行FL培训。建议的管道和FL系统的健壮性经过了测试,以应对与工具部署、数据异构和多任务和数据类型的隐私攻击相关的挑战。一组具有代表性的基于人工智能的工具和相关数据集已经被选择,以涵盖几个验证案例,并分布到每个边缘设备,以密切反映现实世界的场景。本研究展示了重要的实验结果,并分析了模型在不同实际FL条件下的性能,同时强调了FL过程中可能存在的局限性和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fostering Trustworthiness of Federated Learning Ecosystem through Realistic Scenarios
The present study thoroughly evaluates the most common blocking challenges faced by the federated learning (FL) ecosystem and analyzes existing state-of-the-art solutions. A system adaptation pipeline is designed to enable the integration of different AI-based tools in the FL system, while FL training is conducted under realistic conditions using a distributed hardware infrastructure. The suggested pipeline and FL system’s robustness are tested against challenges related to tool deployment, data heterogeneity, and privacy attacks for multiple tasks and data types. A representative set of AI-based tools and related datasets have been selected to cover several validation cases and distributed to each edge device to closely reflect real-world scenarios. The study presents significant outcomes of the experiments and analyzes the models’ performance under different realistic FL conditions, while highlighting potential limitations and issues that occurred during the FL process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1