红外高光谱测深数据压缩算法

I. Gladkova, L. Roytman, M. Goldberg
{"title":"红外高光谱测深数据压缩算法","authors":"I. Gladkova, L. Roytman, M. Goldberg","doi":"10.1109/DCC.2005.27","DOIUrl":null,"url":null,"abstract":"Summary form only given. The research is undertaken by NOAA/NESDIS, for its GOES-R Earth observation satellite series, to be launched in the 2013 time frame, to enable greater distribution of its scientific data, both within the US and internationally. We have developed a new lossless algorithm for compression of the signals from NOAA's environmental satellites using current spacecraft to simulate data from the upcoming GOES-R instrument, and focusing on Aqua Spacecraft's AIRS (atmospheric infrared sounder) instrument in our case study. The AIRS is a high resolution instrument which measures infrared radiances at 2378 wavelengths ranging from 3.74-15.4 /spl mu/m. The AIRS takes 90 measurements as it scans 48.95 degrees perpendicular to the satellite's orbit every 2.667 seconds. We use Level 1A digital count data granules, which represent 6 minutes (or 135 scans) of measurements. Therefore, our data set consists of a 90/spl times/135/spl times/1502 cube of integers ranging from 12-14 bits. Our compression algorithm consists of the following steps: 1) channel partitioning; 2) adaptive clustering; 3) projection onto principal directions; 4) entropy coding of the residuals.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"12 1","pages":"460-"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compression algorithm for infrared hyperspectral sounder data\",\"authors\":\"I. Gladkova, L. Roytman, M. Goldberg\",\"doi\":\"10.1109/DCC.2005.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The research is undertaken by NOAA/NESDIS, for its GOES-R Earth observation satellite series, to be launched in the 2013 time frame, to enable greater distribution of its scientific data, both within the US and internationally. We have developed a new lossless algorithm for compression of the signals from NOAA's environmental satellites using current spacecraft to simulate data from the upcoming GOES-R instrument, and focusing on Aqua Spacecraft's AIRS (atmospheric infrared sounder) instrument in our case study. The AIRS is a high resolution instrument which measures infrared radiances at 2378 wavelengths ranging from 3.74-15.4 /spl mu/m. The AIRS takes 90 measurements as it scans 48.95 degrees perpendicular to the satellite's orbit every 2.667 seconds. We use Level 1A digital count data granules, which represent 6 minutes (or 135 scans) of measurements. Therefore, our data set consists of a 90/spl times/135/spl times/1502 cube of integers ranging from 12-14 bits. Our compression algorithm consists of the following steps: 1) channel partitioning; 2) adaptive clustering; 3) projection onto principal directions; 4) entropy coding of the residuals.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"12 1\",\"pages\":\"460-\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2005.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

只提供摘要形式。这项研究是由NOAA/NESDIS为其将于2013年发射的GOES-R地球观测卫星系列进行的,以便在美国国内和国际上更好地分发其科学数据。我们开发了一种新的无损算法,用于压缩来自NOAA环境卫星的信号,使用现有航天器模拟即将推出的GOES-R仪器的数据,并在我们的案例研究中重点关注Aqua航天器的AIRS(大气红外探测仪)仪器。AIRS是一种高分辨率仪器,可测量2378个波长的红外辐射,范围为3.74-15.4 /spl mu/m。AIRS每2.667秒扫描与卫星轨道垂直48.95度的卫星,进行90次测量。我们使用1A级数字计数数据颗粒,代表6分钟(或135次扫描)的测量。因此,我们的数据集由一个90/spl乘以/135/spl乘以/1502的整数立方组成,范围从12-14位。我们的压缩算法包括以下步骤:1)通道划分;2)自适应聚类;3)主方向投影;4)残差熵编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compression algorithm for infrared hyperspectral sounder data
Summary form only given. The research is undertaken by NOAA/NESDIS, for its GOES-R Earth observation satellite series, to be launched in the 2013 time frame, to enable greater distribution of its scientific data, both within the US and internationally. We have developed a new lossless algorithm for compression of the signals from NOAA's environmental satellites using current spacecraft to simulate data from the upcoming GOES-R instrument, and focusing on Aqua Spacecraft's AIRS (atmospheric infrared sounder) instrument in our case study. The AIRS is a high resolution instrument which measures infrared radiances at 2378 wavelengths ranging from 3.74-15.4 /spl mu/m. The AIRS takes 90 measurements as it scans 48.95 degrees perpendicular to the satellite's orbit every 2.667 seconds. We use Level 1A digital count data granules, which represent 6 minutes (or 135 scans) of measurements. Therefore, our data set consists of a 90/spl times/135/spl times/1502 cube of integers ranging from 12-14 bits. Our compression algorithm consists of the following steps: 1) channel partitioning; 2) adaptive clustering; 3) projection onto principal directions; 4) entropy coding of the residuals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster Maximal Exact Matches with Lazy LCP Evaluation. Recursive Prefix-Free Parsing for Building Big BWTs. PHONI: Streamed Matching Statistics with Multi-Genome References. Client-Driven Transmission of JPEG2000 Image Sequences Using Motion Compensated Conditional Replenishment GeneComp, a new reference-based compressor for SAM files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1