{"title":"质子交换膜燃料电池用溶剂热合成Pt-Ni/C纳米框架电催化剂","authors":"J. Negondeni, T. Ngwenya","doi":"10.36303/satnt.2021cosaami.48","DOIUrl":null,"url":null,"abstract":"As South Africa moves towards the production and storage of green energy sources, proton exchange membrane (PEM) fuel cells have been characterized as promising energy sources for transportation, heating, and power sources and have an efficient energy conversion that does not allow greenhouse gas emissions. However, to improve the energy efficiency and to reduce the system cost, and make it suitable for large-scale commercialization, precious metal catalyst needs to be developed with improved catalyst activities for PEM fuel cells. Due to the high cost of platinum, platinum alloy nanostructures have been investigated for use as an electrocatalyst in PEM fuel cells. Platinum-nickel alloy nanostructures in previous research studies have shown 36- and 22-times enhancement in mass and specific activity respectively, towards the cathodic oxygen reduction reaction (ORR) in PEM fuel cells and for the methanol oxidation reaction (MOR) in direct methanol fuel cell (DMFC) than the Pt/C catalyst. Therefore, this research focused on developing rich Pt-skin platinumnickel nanoframes which were synthesized using solvothermal and in-house developed methods. The intermediate products were etched to remove the interior using either a weak acid or an oxidative acid for comparison. The final product was supported by Vulcan XC-72 at a loading of 20 wt. % Pt-Ni. The properties of Pt-Ni/C will be characterized and evaluated to determine if the nanoframes are formed. The preliminary results for the X-ray diffraction pattern showed that the structure of Pt-Ni contracted and affected the catalyst properties. The catalytic activities were determined by electrochemical methods using thin-film RDE measurements, the results indicated that Pt-Ni as-synthesized has higher specific activity at 900 mV versus RHE. The specific and mass activity of the oxygen reduction reaction for Pt-Ni/C will be compared to the activities of the current high-performing Pt/C catalyst.","PeriodicalId":22035,"journal":{"name":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing Pt-Ni/C Nanoframes electrocatalyst using the solvothermal and in-house developed method for PEM fuel cells\",\"authors\":\"J. Negondeni, T. Ngwenya\",\"doi\":\"10.36303/satnt.2021cosaami.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As South Africa moves towards the production and storage of green energy sources, proton exchange membrane (PEM) fuel cells have been characterized as promising energy sources for transportation, heating, and power sources and have an efficient energy conversion that does not allow greenhouse gas emissions. However, to improve the energy efficiency and to reduce the system cost, and make it suitable for large-scale commercialization, precious metal catalyst needs to be developed with improved catalyst activities for PEM fuel cells. Due to the high cost of platinum, platinum alloy nanostructures have been investigated for use as an electrocatalyst in PEM fuel cells. Platinum-nickel alloy nanostructures in previous research studies have shown 36- and 22-times enhancement in mass and specific activity respectively, towards the cathodic oxygen reduction reaction (ORR) in PEM fuel cells and for the methanol oxidation reaction (MOR) in direct methanol fuel cell (DMFC) than the Pt/C catalyst. Therefore, this research focused on developing rich Pt-skin platinumnickel nanoframes which were synthesized using solvothermal and in-house developed methods. The intermediate products were etched to remove the interior using either a weak acid or an oxidative acid for comparison. The final product was supported by Vulcan XC-72 at a loading of 20 wt. % Pt-Ni. The properties of Pt-Ni/C will be characterized and evaluated to determine if the nanoframes are formed. The preliminary results for the X-ray diffraction pattern showed that the structure of Pt-Ni contracted and affected the catalyst properties. The catalytic activities were determined by electrochemical methods using thin-film RDE measurements, the results indicated that Pt-Ni as-synthesized has higher specific activity at 900 mV versus RHE. The specific and mass activity of the oxygen reduction reaction for Pt-Ni/C will be compared to the activities of the current high-performing Pt/C catalyst.\",\"PeriodicalId\":22035,\"journal\":{\"name\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36303/satnt.2021cosaami.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36303/satnt.2021cosaami.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
随着南非向绿色能源的生产和储存迈进,质子交换膜(PEM)燃料电池被认为是一种很有前途的能源,可用于运输、加热和发电,并且具有高效的能量转换,不允许温室气体排放。然而,为了提高能源效率和降低系统成本,使其适合大规模商业化,需要开发具有更高催化剂活性的贵金属催化剂用于PEM燃料电池。由于铂的高成本,铂合金纳米结构已被研究用于PEM燃料电池的电催化剂。在以往的研究中,铂镍合金纳米结构在PEM燃料电池中的阴极氧还原反应(ORR)和直接甲醇燃料电池(DMFC)中的甲醇氧化反应(MOR)的质量和比活性分别比Pt/C催化剂提高36倍和22倍。因此,本研究的重点是利用溶剂热法和自行开发的方法合成富铂镍纳米框架。中间产物蚀刻去除内部使用弱酸或氧化酸进行比较。最终产品由火神XC-72支撑,负载为20wt . % Pt-Ni。将对Pt-Ni/C的性质进行表征和评价,以确定是否形成纳米框架。x射线衍射图的初步结果表明,Pt-Ni的结构收缩,影响了催化剂的性能。采用薄膜RDE测量电化学方法测定了Pt-Ni的催化活性,结果表明,合成的Pt-Ni在900 mV时比RHE具有更高的比活性。将Pt- ni /C的氧还原反应的比活性和质量活性与目前高性能Pt/C催化剂的活性进行比较。
Synthesizing Pt-Ni/C Nanoframes electrocatalyst using the solvothermal and in-house developed method for PEM fuel cells
As South Africa moves towards the production and storage of green energy sources, proton exchange membrane (PEM) fuel cells have been characterized as promising energy sources for transportation, heating, and power sources and have an efficient energy conversion that does not allow greenhouse gas emissions. However, to improve the energy efficiency and to reduce the system cost, and make it suitable for large-scale commercialization, precious metal catalyst needs to be developed with improved catalyst activities for PEM fuel cells. Due to the high cost of platinum, platinum alloy nanostructures have been investigated for use as an electrocatalyst in PEM fuel cells. Platinum-nickel alloy nanostructures in previous research studies have shown 36- and 22-times enhancement in mass and specific activity respectively, towards the cathodic oxygen reduction reaction (ORR) in PEM fuel cells and for the methanol oxidation reaction (MOR) in direct methanol fuel cell (DMFC) than the Pt/C catalyst. Therefore, this research focused on developing rich Pt-skin platinumnickel nanoframes which were synthesized using solvothermal and in-house developed methods. The intermediate products were etched to remove the interior using either a weak acid or an oxidative acid for comparison. The final product was supported by Vulcan XC-72 at a loading of 20 wt. % Pt-Ni. The properties of Pt-Ni/C will be characterized and evaluated to determine if the nanoframes are formed. The preliminary results for the X-ray diffraction pattern showed that the structure of Pt-Ni contracted and affected the catalyst properties. The catalytic activities were determined by electrochemical methods using thin-film RDE measurements, the results indicated that Pt-Ni as-synthesized has higher specific activity at 900 mV versus RHE. The specific and mass activity of the oxygen reduction reaction for Pt-Ni/C will be compared to the activities of the current high-performing Pt/C catalyst.