{"title":"食用淡水蜗牛提取物对砷诱导的大鼠组织损伤的治疗潜力是通过抗氧化机制和抑制促炎反应来确定的","authors":"Sk. Sajed Ali, S. Maiti","doi":"10.59566/ijbs.2017.13135","DOIUrl":null,"url":null,"abstract":"Chronic arsenic exposure results in cancer. Some therapeutic agents show inadequate-potency/ side-effects in arsenic-toxicity treatment. The Bellamya bengalensis, an edible snail has long been used by rural people comprised of both ethnic and nonethnic groups as traditional medicine in several health-anomalies/ liver-disorders. In an attempt to investigate the possible protective and therapeutic effect against arsenic induced rat tissue damage are conferred by antioxidative mechanism and attenuation of pro-inflammatory response, the extract of B. bengalensis was tested in arsenic intoxicated rat model. Here, Bellamya bengalensis flesh-extract (BBE, 1 g/kg bw/day for 28days) was tested concomitantly in arsenic-intoxicated (0.6 ppm/kg bw/day for 28days) rat, in in-vitro rat liver slices (in Krebs-ringer buffer for 2 and 4 hours treatment with sodium arsenite alone or with BBE). In the rat, BBE strongly prevented arsenic-induced oxidative/necrotic damages to the intestinal epithelial tissue and liver-tissue/DNA by strengthening the antioxidant-system as shown in Non-protein soluble thiol (NPSH), Superoxide Dismutase(SOD) & catalase results which are clearly reflected in DNA-ladder/comet-assay/histo-architecture results. Arsenic alone decreased catalase and SOD activities in-vivo and in-vitro (H2O2/arsenite redox-stress to dialyzed-concentrated SOD) and also decreased antioxidative signaling molecules i.e. NPSH, serum nitric-oxide (NO) levels. At the same time, arsenic increased the tissue malondialdehyde resulting in DNA-breakage/liver-damage which except NO, were restrained by BBE that constitutes high-level of phosphorus/ascorbate/free-thiols. Moreover, an arsenic-induced increase in pro-inflammatory cytokine TNF-α was restored terminating an acute-phase-reaction. This study, for the first-time, shows the efficiencies of some organism/animal extract in hepatic and intestinal tissue challenged with a high level of arsenic with comparison to the natural level water contamination in West Bengal, India. Our present outcome may be utilized for the development of some protective/therapeutic component against arsenic toxicity from this aquatic organism. Further studies are necessary for more conclusive comments.","PeriodicalId":13852,"journal":{"name":"International Journal of Biomedical Science : IJBS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic Potentials of Edible Freshwater-Snail Bellamya Bengalensis Extract against Arsenic-induced Rat Tissue Damage are Conferred by Antioxidative Mechanism and Attenuation of Pro-Inflammatory Response\",\"authors\":\"Sk. Sajed Ali, S. Maiti\",\"doi\":\"10.59566/ijbs.2017.13135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic arsenic exposure results in cancer. Some therapeutic agents show inadequate-potency/ side-effects in arsenic-toxicity treatment. The Bellamya bengalensis, an edible snail has long been used by rural people comprised of both ethnic and nonethnic groups as traditional medicine in several health-anomalies/ liver-disorders. In an attempt to investigate the possible protective and therapeutic effect against arsenic induced rat tissue damage are conferred by antioxidative mechanism and attenuation of pro-inflammatory response, the extract of B. bengalensis was tested in arsenic intoxicated rat model. Here, Bellamya bengalensis flesh-extract (BBE, 1 g/kg bw/day for 28days) was tested concomitantly in arsenic-intoxicated (0.6 ppm/kg bw/day for 28days) rat, in in-vitro rat liver slices (in Krebs-ringer buffer for 2 and 4 hours treatment with sodium arsenite alone or with BBE). In the rat, BBE strongly prevented arsenic-induced oxidative/necrotic damages to the intestinal epithelial tissue and liver-tissue/DNA by strengthening the antioxidant-system as shown in Non-protein soluble thiol (NPSH), Superoxide Dismutase(SOD) & catalase results which are clearly reflected in DNA-ladder/comet-assay/histo-architecture results. Arsenic alone decreased catalase and SOD activities in-vivo and in-vitro (H2O2/arsenite redox-stress to dialyzed-concentrated SOD) and also decreased antioxidative signaling molecules i.e. NPSH, serum nitric-oxide (NO) levels. At the same time, arsenic increased the tissue malondialdehyde resulting in DNA-breakage/liver-damage which except NO, were restrained by BBE that constitutes high-level of phosphorus/ascorbate/free-thiols. Moreover, an arsenic-induced increase in pro-inflammatory cytokine TNF-α was restored terminating an acute-phase-reaction. This study, for the first-time, shows the efficiencies of some organism/animal extract in hepatic and intestinal tissue challenged with a high level of arsenic with comparison to the natural level water contamination in West Bengal, India. Our present outcome may be utilized for the development of some protective/therapeutic component against arsenic toxicity from this aquatic organism. Further studies are necessary for more conclusive comments.\",\"PeriodicalId\":13852,\"journal\":{\"name\":\"International Journal of Biomedical Science : IJBS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Science : IJBS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59566/ijbs.2017.13135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Science : IJBS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59566/ijbs.2017.13135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Therapeutic Potentials of Edible Freshwater-Snail Bellamya Bengalensis Extract against Arsenic-induced Rat Tissue Damage are Conferred by Antioxidative Mechanism and Attenuation of Pro-Inflammatory Response
Chronic arsenic exposure results in cancer. Some therapeutic agents show inadequate-potency/ side-effects in arsenic-toxicity treatment. The Bellamya bengalensis, an edible snail has long been used by rural people comprised of both ethnic and nonethnic groups as traditional medicine in several health-anomalies/ liver-disorders. In an attempt to investigate the possible protective and therapeutic effect against arsenic induced rat tissue damage are conferred by antioxidative mechanism and attenuation of pro-inflammatory response, the extract of B. bengalensis was tested in arsenic intoxicated rat model. Here, Bellamya bengalensis flesh-extract (BBE, 1 g/kg bw/day for 28days) was tested concomitantly in arsenic-intoxicated (0.6 ppm/kg bw/day for 28days) rat, in in-vitro rat liver slices (in Krebs-ringer buffer for 2 and 4 hours treatment with sodium arsenite alone or with BBE). In the rat, BBE strongly prevented arsenic-induced oxidative/necrotic damages to the intestinal epithelial tissue and liver-tissue/DNA by strengthening the antioxidant-system as shown in Non-protein soluble thiol (NPSH), Superoxide Dismutase(SOD) & catalase results which are clearly reflected in DNA-ladder/comet-assay/histo-architecture results. Arsenic alone decreased catalase and SOD activities in-vivo and in-vitro (H2O2/arsenite redox-stress to dialyzed-concentrated SOD) and also decreased antioxidative signaling molecules i.e. NPSH, serum nitric-oxide (NO) levels. At the same time, arsenic increased the tissue malondialdehyde resulting in DNA-breakage/liver-damage which except NO, were restrained by BBE that constitutes high-level of phosphorus/ascorbate/free-thiols. Moreover, an arsenic-induced increase in pro-inflammatory cytokine TNF-α was restored terminating an acute-phase-reaction. This study, for the first-time, shows the efficiencies of some organism/animal extract in hepatic and intestinal tissue challenged with a high level of arsenic with comparison to the natural level water contamination in West Bengal, India. Our present outcome may be utilized for the development of some protective/therapeutic component against arsenic toxicity from this aquatic organism. Further studies are necessary for more conclusive comments.