利用特征选择提高学生精神运动域的聚类效度

Y. Yamasari, S. M. S. Nugroho, R. Harimurti, M. Purnomo
{"title":"利用特征选择提高学生精神运动域的聚类效度","authors":"Y. Yamasari, S. M. S. Nugroho, R. Harimurti, M. Purnomo","doi":"10.1109/ICOIACT.2018.8350744","DOIUrl":null,"url":null,"abstract":"In the student clustering, the high cluster validity is very important because of this cause clarity a student in a cluster. Furthermore, it becomes easier for a teacher to do the best learning process. This paper focuses on the improvement of cluster validity applied by a suitable feature selection method, especially student's psychomotor domain. Here, we propose the feature selection by the random method. In addition, we apply k-means as the popular clustering method in educational data mining by the two initial of cluster center point: k-means++ and random. For cluster evaluation stage, silhouette coefficient is used on Manhattan distance. The experimental result indicates that feature selection is able to enhance the cluster validity which has shown that our methods have higher silhouette value than original k-means. In terms of the maximum silhouette value, our method can reach higher than original_kmeans++ and original_random on average 0.033–0.106. In terms of the minimum silhouette value, our method can achieve higher than original_kmeans++ and original_random on average 0.123–0.240.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"84 1","pages":"460-465"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving the cluster validity on student's psychomotor domain using feature selection\",\"authors\":\"Y. Yamasari, S. M. S. Nugroho, R. Harimurti, M. Purnomo\",\"doi\":\"10.1109/ICOIACT.2018.8350744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the student clustering, the high cluster validity is very important because of this cause clarity a student in a cluster. Furthermore, it becomes easier for a teacher to do the best learning process. This paper focuses on the improvement of cluster validity applied by a suitable feature selection method, especially student's psychomotor domain. Here, we propose the feature selection by the random method. In addition, we apply k-means as the popular clustering method in educational data mining by the two initial of cluster center point: k-means++ and random. For cluster evaluation stage, silhouette coefficient is used on Manhattan distance. The experimental result indicates that feature selection is able to enhance the cluster validity which has shown that our methods have higher silhouette value than original k-means. In terms of the maximum silhouette value, our method can reach higher than original_kmeans++ and original_random on average 0.033–0.106. In terms of the minimum silhouette value, our method can achieve higher than original_kmeans++ and original_random on average 0.123–0.240.\",\"PeriodicalId\":6660,\"journal\":{\"name\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"volume\":\"84 1\",\"pages\":\"460-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIACT.2018.8350744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在学生聚类中,高的聚类效度是非常重要的,因为它可以使聚类中的学生清晰。此外,它变得更容易为教师做最好的学习过程。本文重点研究了采用合适的特征选择方法来提高聚类效度,特别是学生的精神运动领域。在这里,我们提出了用随机方法进行特征选择。此外,我们通过k-means和random两个聚类中心点的初始值,将k-means作为流行的聚类方法应用到教育数据挖掘中。在聚类评价阶段,对曼哈顿距离使用剪影系数。实验结果表明,特征选择能够提高聚类有效性,表明我们的方法具有比原始k-means更高的轮廓值。在最大剪影值方面,我们的方法平均可以达到高于original_kmean++和original_random的0.033-0.106。在最小轮廓值方面,我们的方法平均可以达到高于original_kmean++和original_random的0.123-0.240。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the cluster validity on student's psychomotor domain using feature selection
In the student clustering, the high cluster validity is very important because of this cause clarity a student in a cluster. Furthermore, it becomes easier for a teacher to do the best learning process. This paper focuses on the improvement of cluster validity applied by a suitable feature selection method, especially student's psychomotor domain. Here, we propose the feature selection by the random method. In addition, we apply k-means as the popular clustering method in educational data mining by the two initial of cluster center point: k-means++ and random. For cluster evaluation stage, silhouette coefficient is used on Manhattan distance. The experimental result indicates that feature selection is able to enhance the cluster validity which has shown that our methods have higher silhouette value than original k-means. In terms of the maximum silhouette value, our method can reach higher than original_kmeans++ and original_random on average 0.033–0.106. In terms of the minimum silhouette value, our method can achieve higher than original_kmeans++ and original_random on average 0.123–0.240.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Normalization and Database Design for Joglosemar Tourism Management of fault tolerance and traffic congestion in cloud data center Development of smart public transportation system in Jakarta city based on integrated IoT platform Improving the quality of enterprise IT goals using COBIT 5 prioritization approach Data mining technique with cluster anaysis use K-means algorithm for LQ45 index on Indonesia stock exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1