Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang
{"title":"ag - resunet++:一种改进的基于编码器-解码器的结肠镜图像息肉分割方法","authors":"Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang","doi":"10.1109/RIVF51545.2021.9642070","DOIUrl":null,"url":null,"abstract":"Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"14 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AG-ResUNet++: An Improved Encoder-Decoder Based Method for Polyp Segmentation in Colonoscopy Images\",\"authors\":\"Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang\",\"doi\":\"10.1109/RIVF51545.2021.9642070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"14 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AG-ResUNet++: An Improved Encoder-Decoder Based Method for Polyp Segmentation in Colonoscopy Images
Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.