有限信息下维纳系统的一种新的辨识方法

Qibing Jin , Jun Dou , Feng Ding , Liting Cao
{"title":"有限信息下维纳系统的一种新的辨识方法","authors":"Qibing Jin ,&nbsp;Jun Dou ,&nbsp;Feng Ding ,&nbsp;Liting Cao","doi":"10.1016/j.mcm.2013.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>To solve the problem caused by the lack of the structure of the nonlinearity in Wiener systems identification, we propose a new approach to identify the linear part and the nonlinear part of a Wiener system in sequence by using the limited information on the nonlinearity. The linear part of the system is identified firstly based on the limited information of the nonlinearity, such as sign information, monotonic information and then, we construct the internal signals to identify the structure and the parameters of the Wiener systems. A novel Particle Swarm Optimization–Rosenbrock (PSO–Rosenbrock) algorithm is developed and the numerical simulation shows that the identification procedure proposed in this paper is effective.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 7","pages":"Pages 1531-1539"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2013.06.005","citationCount":"9","resultStr":"{\"title\":\"A novel identification method for Wiener systems with the limited information\",\"authors\":\"Qibing Jin ,&nbsp;Jun Dou ,&nbsp;Feng Ding ,&nbsp;Liting Cao\",\"doi\":\"10.1016/j.mcm.2013.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To solve the problem caused by the lack of the structure of the nonlinearity in Wiener systems identification, we propose a new approach to identify the linear part and the nonlinear part of a Wiener system in sequence by using the limited information on the nonlinearity. The linear part of the system is identified firstly based on the limited information of the nonlinearity, such as sign information, monotonic information and then, we construct the internal signals to identify the structure and the parameters of the Wiener systems. A novel Particle Swarm Optimization–Rosenbrock (PSO–Rosenbrock) algorithm is developed and the numerical simulation shows that the identification procedure proposed in this paper is effective.</p></div>\",\"PeriodicalId\":49872,\"journal\":{\"name\":\"Mathematical and Computer Modelling\",\"volume\":\"58 7\",\"pages\":\"Pages 1531-1539\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mcm.2013.06.005\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895717713002069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895717713002069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了解决在维纳系统辨识中由于非线性结构缺乏所造成的问题,提出了一种利用非线性的有限信息,对维纳系统的线性部分和非线性部分进行顺序辨识的新方法。首先根据非线性的有限信息,如符号信息、单调信息,对系统的线性部分进行识别,然后构造内部信号来识别维纳系统的结构和参数。提出了一种新的粒子群优化- rosenbrock (PSO-Rosenbrock)算法,并通过数值仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel identification method for Wiener systems with the limited information

To solve the problem caused by the lack of the structure of the nonlinearity in Wiener systems identification, we propose a new approach to identify the linear part and the nonlinear part of a Wiener system in sequence by using the limited information on the nonlinearity. The linear part of the system is identified firstly based on the limited information of the nonlinearity, such as sign information, monotonic information and then, we construct the internal signals to identify the structure and the parameters of the Wiener systems. A novel Particle Swarm Optimization–Rosenbrock (PSO–Rosenbrock) algorithm is developed and the numerical simulation shows that the identification procedure proposed in this paper is effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
期刊最新文献
Review of Current Policy Strategies to Reduce US Cancer Drug Costs. Editorial Board WITHDRAWN: Risk analysis and damage assessment of financial institutions in cyber attacks between nations Airline network design and adjustment in response to fluctuation in jet fuel prices Valedictory Editorial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1