{"title":"探索之字形石墨烯/氢氮化硼异质纳米带的HER活性","authors":"Tisita Das, G. P. Das","doi":"10.1063/1.5112944","DOIUrl":null,"url":null,"abstract":"Electrochemically inert graphene and h-BN can be made ‘active’ for hydrogen evolution reaction (HER) by forming a heterojunction between their 1D nanoribbons in zigzag configuration with mono-hydrogenated edges. We report here density functional theory (DFT) based first principles investigation of this novel system, where the C-atom at a particular site in the heterojunction region serves as active site. A systematic study has been carried out by changing the position and number of C-C and B-N units in the hetero nanoribbon of fixed width. Both odd and even number of width ribbons have been taken into consideration, in order to study the HER catalytic ability as a function of the ribbon width. Finally the catalyzing effect of various ribbons with different composition of C-C and B-N units has been demonstrated by free energy profile analysis.Electrochemically inert graphene and h-BN can be made ‘active’ for hydrogen evolution reaction (HER) by forming a heterojunction between their 1D nanoribbons in zigzag configuration with mono-hydrogenated edges. We report here density functional theory (DFT) based first principles investigation of this novel system, where the C-atom at a particular site in the heterojunction region serves as active site. A systematic study has been carried out by changing the position and number of C-C and B-N units in the hetero nanoribbon of fixed width. Both odd and even number of width ribbons have been taken into consideration, in order to study the HER catalytic ability as a function of the ribbon width. Finally the catalyzing effect of various ribbons with different composition of C-C and B-N units has been demonstrated by free energy profile analysis.","PeriodicalId":10874,"journal":{"name":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring HER activity on zigzag graphene/h-BN hetero nanoribbon\",\"authors\":\"Tisita Das, G. P. Das\",\"doi\":\"10.1063/1.5112944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemically inert graphene and h-BN can be made ‘active’ for hydrogen evolution reaction (HER) by forming a heterojunction between their 1D nanoribbons in zigzag configuration with mono-hydrogenated edges. We report here density functional theory (DFT) based first principles investigation of this novel system, where the C-atom at a particular site in the heterojunction region serves as active site. A systematic study has been carried out by changing the position and number of C-C and B-N units in the hetero nanoribbon of fixed width. Both odd and even number of width ribbons have been taken into consideration, in order to study the HER catalytic ability as a function of the ribbon width. Finally the catalyzing effect of various ribbons with different composition of C-C and B-N units has been demonstrated by free energy profile analysis.Electrochemically inert graphene and h-BN can be made ‘active’ for hydrogen evolution reaction (HER) by forming a heterojunction between their 1D nanoribbons in zigzag configuration with mono-hydrogenated edges. We report here density functional theory (DFT) based first principles investigation of this novel system, where the C-atom at a particular site in the heterojunction region serves as active site. A systematic study has been carried out by changing the position and number of C-C and B-N units in the hetero nanoribbon of fixed width. Both odd and even number of width ribbons have been taken into consideration, in order to study the HER catalytic ability as a function of the ribbon width. Finally the catalyzing effect of various ribbons with different composition of C-C and B-N units has been demonstrated by free energy profile analysis.\",\"PeriodicalId\":10874,\"journal\":{\"name\":\"DAE SOLID STATE PHYSICS SYMPOSIUM 2018\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAE SOLID STATE PHYSICS SYMPOSIUM 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5112944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5112944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring HER activity on zigzag graphene/h-BN hetero nanoribbon
Electrochemically inert graphene and h-BN can be made ‘active’ for hydrogen evolution reaction (HER) by forming a heterojunction between their 1D nanoribbons in zigzag configuration with mono-hydrogenated edges. We report here density functional theory (DFT) based first principles investigation of this novel system, where the C-atom at a particular site in the heterojunction region serves as active site. A systematic study has been carried out by changing the position and number of C-C and B-N units in the hetero nanoribbon of fixed width. Both odd and even number of width ribbons have been taken into consideration, in order to study the HER catalytic ability as a function of the ribbon width. Finally the catalyzing effect of various ribbons with different composition of C-C and B-N units has been demonstrated by free energy profile analysis.Electrochemically inert graphene and h-BN can be made ‘active’ for hydrogen evolution reaction (HER) by forming a heterojunction between their 1D nanoribbons in zigzag configuration with mono-hydrogenated edges. We report here density functional theory (DFT) based first principles investigation of this novel system, where the C-atom at a particular site in the heterojunction region serves as active site. A systematic study has been carried out by changing the position and number of C-C and B-N units in the hetero nanoribbon of fixed width. Both odd and even number of width ribbons have been taken into consideration, in order to study the HER catalytic ability as a function of the ribbon width. Finally the catalyzing effect of various ribbons with different composition of C-C and B-N units has been demonstrated by free energy profile analysis.