从大规模图像分类到入门级分类

Vicente Ordonez, Jia Deng, Yejin Choi, A. Berg, Tamara L. Berg
{"title":"从大规模图像分类到入门级分类","authors":"Vicente Ordonez, Jia Deng, Yejin Choi, A. Berg, Tamara L. Berg","doi":"10.1109/ICCV.2013.344","DOIUrl":null,"url":null,"abstract":"Entry level categories - the labels people will use to name an object - were originally defined and studied by psychologists in the 1980s. In this paper we study entry-level categories at a large scale and learn the first models for predicting entry-level categories for images. Our models combine visual recognition predictions with proxies for word \"naturalness\" mined from the enormous amounts of text on the web. We demonstrate the usefulness of our models for predicting nouns (entry-level words) associated with images by people. We also learn mappings between concepts predicted by existing visual recognition systems and entry-level concepts that could be useful for improving human-focused applications such as natural language image description or retrieval.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"2768-2775"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"From Large Scale Image Categorization to Entry-Level Categories\",\"authors\":\"Vicente Ordonez, Jia Deng, Yejin Choi, A. Berg, Tamara L. Berg\",\"doi\":\"10.1109/ICCV.2013.344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entry level categories - the labels people will use to name an object - were originally defined and studied by psychologists in the 1980s. In this paper we study entry-level categories at a large scale and learn the first models for predicting entry-level categories for images. Our models combine visual recognition predictions with proxies for word \\\"naturalness\\\" mined from the enormous amounts of text on the web. We demonstrate the usefulness of our models for predicting nouns (entry-level words) associated with images by people. We also learn mappings between concepts predicted by existing visual recognition systems and entry-level concepts that could be useful for improving human-focused applications such as natural language image description or retrieval.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"1 1\",\"pages\":\"2768-2775\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

摘要

入门级分类——人们用来命名一个物体的标签——最初是由心理学家在20世纪80年代定义和研究的。本文研究了大尺度的入门级分类,学习了预测图像入门级分类的第一个模型。我们的模型将视觉识别预测与从网络上大量文本中挖掘的单词“自然度”代理相结合。我们展示了我们的模型在预测人们与图像相关的名词(入门级单词)方面的实用性。我们还学习了现有视觉识别系统预测的概念与入门级概念之间的映射,这些概念可能有助于改进以人为中心的应用程序,如自然语言图像描述或检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Large Scale Image Categorization to Entry-Level Categories
Entry level categories - the labels people will use to name an object - were originally defined and studied by psychologists in the 1980s. In this paper we study entry-level categories at a large scale and learn the first models for predicting entry-level categories for images. Our models combine visual recognition predictions with proxies for word "naturalness" mined from the enormous amounts of text on the web. We demonstrate the usefulness of our models for predicting nouns (entry-level words) associated with images by people. We also learn mappings between concepts predicted by existing visual recognition systems and entry-level concepts that could be useful for improving human-focused applications such as natural language image description or retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1