{"title":"样本协方差矩阵线性特征值统计差异的波动","authors":"Giorgio Cipolloni, L. Erdős","doi":"10.1142/S2010326320500069","DOIUrl":null,"url":null,"abstract":"We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices\",\"authors\":\"Giorgio Cipolloni, L. Erdős\",\"doi\":\"10.1142/S2010326320500069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326320500069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices
We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.