基于间接转矩控制的三相异步电动机性能与分析

A. Pradipta, S. Triwijaya, M. Ridwan
{"title":"基于间接转矩控制的三相异步电动机性能与分析","authors":"A. Pradipta, S. Triwijaya, M. Ridwan","doi":"10.26418/elkha.v13i2.49181","DOIUrl":null,"url":null,"abstract":"Induction motors are widely used in industrial processes, vehicles and automation. Three-phase induction motors can be used for traction systems on electric locomotives. In this case, the speed control system is an important thing that must be applied to the propulsion system. This study aimed to test the indirect torque control for a Three-phase induction motor. A proportional integral (PI) controller was applied for speed controller. The indirect torque control system was modeled and simulated using PSIM software. According to the result, the control method showed a good performance. The speed could be maintained even the speed reference was changing or a load was applied. The steady state error of the speed response was just 0.1% with rise time around 0.06 s. The stator current went up to 39.5 A in starting condition. The stator current reached 12 A rms when the load of 10 Nm was applied. Then, the current rose to 15.7 A rms when the load was increased to 40 Nm and the current came down to 12.8 A rms when the load was decreased to 20 Nm.","PeriodicalId":32754,"journal":{"name":"Elkha Jurnal Teknik Elektro","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance and Analysis of Indirect Torque Control-Based Three-Phase Induction Motor\",\"authors\":\"A. Pradipta, S. Triwijaya, M. Ridwan\",\"doi\":\"10.26418/elkha.v13i2.49181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induction motors are widely used in industrial processes, vehicles and automation. Three-phase induction motors can be used for traction systems on electric locomotives. In this case, the speed control system is an important thing that must be applied to the propulsion system. This study aimed to test the indirect torque control for a Three-phase induction motor. A proportional integral (PI) controller was applied for speed controller. The indirect torque control system was modeled and simulated using PSIM software. According to the result, the control method showed a good performance. The speed could be maintained even the speed reference was changing or a load was applied. The steady state error of the speed response was just 0.1% with rise time around 0.06 s. The stator current went up to 39.5 A in starting condition. The stator current reached 12 A rms when the load of 10 Nm was applied. Then, the current rose to 15.7 A rms when the load was increased to 40 Nm and the current came down to 12.8 A rms when the load was decreased to 20 Nm.\",\"PeriodicalId\":32754,\"journal\":{\"name\":\"Elkha Jurnal Teknik Elektro\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elkha Jurnal Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/elkha.v13i2.49181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elkha Jurnal Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/elkha.v13i2.49181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

感应电动机广泛应用于工业过程、车辆和自动化。三相感应电动机可用于电力机车的牵引系统。在这种情况下,速度控制系统是一个重要的东西,必须应用到推进系统。本研究旨在测试三相感应电动机的间接转矩控制。速度控制器采用比例积分(PI)控制器。利用PSIM软件对间接转矩控制系统进行了建模和仿真。结果表明,该控制方法具有良好的控制效果。即使速度参考发生变化或施加负载,也可以保持速度。速度响应的稳态误差仅为0.1%,上升时间约为0.06 s。启动状态下定子电流高达39.5 A。施加10 Nm负载时,定子电流达到12 A rms。然后,当负载增加到40 Nm时,电流上升到15.7 A rms,当负载减少到20 Nm时,电流下降到12.8 A rms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance and Analysis of Indirect Torque Control-Based Three-Phase Induction Motor
Induction motors are widely used in industrial processes, vehicles and automation. Three-phase induction motors can be used for traction systems on electric locomotives. In this case, the speed control system is an important thing that must be applied to the propulsion system. This study aimed to test the indirect torque control for a Three-phase induction motor. A proportional integral (PI) controller was applied for speed controller. The indirect torque control system was modeled and simulated using PSIM software. According to the result, the control method showed a good performance. The speed could be maintained even the speed reference was changing or a load was applied. The steady state error of the speed response was just 0.1% with rise time around 0.06 s. The stator current went up to 39.5 A in starting condition. The stator current reached 12 A rms when the load of 10 Nm was applied. Then, the current rose to 15.7 A rms when the load was increased to 40 Nm and the current came down to 12.8 A rms when the load was decreased to 20 Nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23
审稿时长
10 weeks
期刊最新文献
Multi-oscillations Detection for Process Variables Based on K-Nearest Neighbor Interference Analysis Between 5G System and Fixed Satellite Service in the 28 GHz Band Heading control for quadruped stair climbing based on PD controller for the KRSRI competition Optimization Objective Function Corona Discharge Acoustic Using Fuzzy c-Means (FcM ) Temperature and Humidity Control System for Pole-Mounted Metering Circuit Breaker with Artificial Neural Network Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1