槲皮素在水-二甲亚砜溶剂中的溶剂化热力学

Natalia N. Kuranova, D. Kabirov, O. V. Kashina, T. Usacheva
{"title":"槲皮素在水-二甲亚砜溶剂中的溶剂化热力学","authors":"Natalia N. Kuranova, D. Kabirov, O. V. Kashina, T. Usacheva","doi":"10.6060/ivkkt.20206310.6285","DOIUrl":null,"url":null,"abstract":"The distribution coefficients of quercetin (QCT) in water-dimethylsulfoxide solvents with a content of dimethylsulfoxide from 0.0 to 0.5 mol. fr. were determined by the method of interfacial distribution of the substance between two immiscible phases: aqueous or water-dimethylsulfoxide solution and n-hexane at 298.2 K. The distribution coefficients are less than one, which indicates a better solvation of quercetin in water and a water-dimethylsulfoxide solvent than in hexane. Changes in the distribution coefficients of quercetin are not correlated with a gradual increase in the content of dimethylsulfoxide (DMSO) in the solvent. Using the obtained values of the distribution coefficients, we calculated the changes in the Gibbs energy of re-solvation of quercetin in water-dimethylsulfoxide solvents. The dependence of the Gibbs energy of QCT re-solvation on the solvent composition has an extreme form with a minimum in the range of DMSO concentrations corresponding to 0.3 mol. fr. A comparative analysis of the effect of a water-dimethylsulfoxide solvent on the change in Gibbs energy of re-solvation of quercetin, nicotinamide and nicotinic acid was carried out. In the case of both nicotinamide and nicotinic acid, an extreme change is observed in the Gibbs energy of re-solvation of particles with a maximum in the region with a low content of non-aqueous component XDMSO ≈ 0.1 mol. fr. The main contribution to the weakening of the solvation of nicotinamide and nicotinic acid is due to the enthalpy component, and with increasing concentration of dimethylsulfoxide there is an increase in the contribution of entropy to the change in the Gibbs energy transfer. An extreme change in the Gibbs energy transfer of quercetin suggests that the minimum on the dependence ∆trGº(QCT) = F(χDMSO) is also a consequence of a change in the prevailing thermodynamic factor in the solvate state of quercetin.","PeriodicalId":14640,"journal":{"name":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THERMODYNAMICS OF QUERCETIN SOLVATION IN WATER-DIMETHYLSULFOXIDE SOLVENT\",\"authors\":\"Natalia N. Kuranova, D. Kabirov, O. V. Kashina, T. Usacheva\",\"doi\":\"10.6060/ivkkt.20206310.6285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution coefficients of quercetin (QCT) in water-dimethylsulfoxide solvents with a content of dimethylsulfoxide from 0.0 to 0.5 mol. fr. were determined by the method of interfacial distribution of the substance between two immiscible phases: aqueous or water-dimethylsulfoxide solution and n-hexane at 298.2 K. The distribution coefficients are less than one, which indicates a better solvation of quercetin in water and a water-dimethylsulfoxide solvent than in hexane. Changes in the distribution coefficients of quercetin are not correlated with a gradual increase in the content of dimethylsulfoxide (DMSO) in the solvent. Using the obtained values of the distribution coefficients, we calculated the changes in the Gibbs energy of re-solvation of quercetin in water-dimethylsulfoxide solvents. The dependence of the Gibbs energy of QCT re-solvation on the solvent composition has an extreme form with a minimum in the range of DMSO concentrations corresponding to 0.3 mol. fr. A comparative analysis of the effect of a water-dimethylsulfoxide solvent on the change in Gibbs energy of re-solvation of quercetin, nicotinamide and nicotinic acid was carried out. In the case of both nicotinamide and nicotinic acid, an extreme change is observed in the Gibbs energy of re-solvation of particles with a maximum in the region with a low content of non-aqueous component XDMSO ≈ 0.1 mol. fr. The main contribution to the weakening of the solvation of nicotinamide and nicotinic acid is due to the enthalpy component, and with increasing concentration of dimethylsulfoxide there is an increase in the contribution of entropy to the change in the Gibbs energy transfer. An extreme change in the Gibbs energy transfer of quercetin suggests that the minimum on the dependence ∆trGº(QCT) = F(χDMSO) is also a consequence of a change in the prevailing thermodynamic factor in the solvate state of quercetin.\",\"PeriodicalId\":14640,\"journal\":{\"name\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6060/ivkkt.20206310.6285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/ivkkt.20206310.6285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在298.2 K时,用物质在水-二甲亚砜溶液或水-二甲亚砜溶液与正己烷两种不混相之间的界面分布法测定了槲皮素(QCT)在二甲亚砜含量为0.0 ~ 0.5 mol / r的水-二甲亚砜溶剂中的分布系数。分布系数小于1,说明槲皮素在水和水-二甲基亚砜溶剂中的溶剂化效果优于在己烷溶剂中的溶剂化效果。槲皮素分布系数的变化与溶剂中二甲亚砜(DMSO)含量的逐渐增加无关。利用得到的分布系数值,计算了槲皮素在水-二甲亚砜溶剂中再溶剂化的吉布斯能变化。QCT再溶剂化的吉布斯能随溶剂组成的变化呈极值形式,在DMSO浓度为0.3 mol / l的范围内达到最小值。对比分析了水-二甲基亚砜溶剂对槲皮素、烟酰胺和烟酸再溶剂化吉布斯能变化的影响。对于烟酰胺和烟酸,粒子的再溶剂化吉布斯能都发生了极大的变化,在非水组分XDMSO≈0.1 mol. fr含量较低的区域达到最大值。导致烟酰胺和烟酸溶剂化减弱的主要原因是焓组分。随着二甲亚砜浓度的增加,熵对吉布斯能量转移变化的贡献增大。槲皮素吉布斯能量转移的极端变化表明,依赖性∆trGº(QCT) = F(χDMSO)的最小值也是槲皮素溶剂化状态中主要热力学因素变化的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THERMODYNAMICS OF QUERCETIN SOLVATION IN WATER-DIMETHYLSULFOXIDE SOLVENT
The distribution coefficients of quercetin (QCT) in water-dimethylsulfoxide solvents with a content of dimethylsulfoxide from 0.0 to 0.5 mol. fr. were determined by the method of interfacial distribution of the substance between two immiscible phases: aqueous or water-dimethylsulfoxide solution and n-hexane at 298.2 K. The distribution coefficients are less than one, which indicates a better solvation of quercetin in water and a water-dimethylsulfoxide solvent than in hexane. Changes in the distribution coefficients of quercetin are not correlated with a gradual increase in the content of dimethylsulfoxide (DMSO) in the solvent. Using the obtained values of the distribution coefficients, we calculated the changes in the Gibbs energy of re-solvation of quercetin in water-dimethylsulfoxide solvents. The dependence of the Gibbs energy of QCT re-solvation on the solvent composition has an extreme form with a minimum in the range of DMSO concentrations corresponding to 0.3 mol. fr. A comparative analysis of the effect of a water-dimethylsulfoxide solvent on the change in Gibbs energy of re-solvation of quercetin, nicotinamide and nicotinic acid was carried out. In the case of both nicotinamide and nicotinic acid, an extreme change is observed in the Gibbs energy of re-solvation of particles with a maximum in the region with a low content of non-aqueous component XDMSO ≈ 0.1 mol. fr. The main contribution to the weakening of the solvation of nicotinamide and nicotinic acid is due to the enthalpy component, and with increasing concentration of dimethylsulfoxide there is an increase in the contribution of entropy to the change in the Gibbs energy transfer. An extreme change in the Gibbs energy transfer of quercetin suggests that the minimum on the dependence ∆trGº(QCT) = F(χDMSO) is also a consequence of a change in the prevailing thermodynamic factor in the solvate state of quercetin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEPENDENCE OF THE ANTIOXIDANT PROPERTIES OF SOME SPATIALLY SUBSTITUTED PHENOLS ON THE CALCULATED PARAMETERS OF THE STRUCTURE OF ANTIOXIDANT MOLECULES THERMOGRAVIMETRIC AND KINETIC STUDY OF FUEL PELLETS FROM BIOMASS OF HERACLEUM SOSNOWSKYI MANDEN SYNTHESIS AND PROPERTIES OF NANOCELLULOSE-DYE CONJUGATES MODEL OF THE INTERMEDIATE CARBON PHASE BASED ON INTERSTITIAL DEFECTS IN GRAPHITE THEORETICAL AND EXPERIMENTAL STUDY OF THE ADSORPTION CAPACITY OF TRANSITION METAL ACETATES IN THE PROCESS OF DESULFURIZATION OF A MODEL HYDROCARBON FUEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1