{"title":"电子枪磁探头","authors":"S. Bheesette, M. Turqueti","doi":"10.1109/NSS/MIC42677.2020.9507871","DOIUrl":null,"url":null,"abstract":"Accurate magnetic field measurements are fundamental to the construction, testing, and certification of magnetic systems. Often, in high accuracy systems, the measurement technique and its implementation may involve a considerable effort. One such example of this type of system is undulators for light sources. Advanced undulators require several magnetic measurements at different stages during their construction. Every magnet block, composed of several magnetic poles, must be measured individually and sorted based on the magnetic moment results. There are two degrees of freedom for each pole. First, for tuning the vertical field, a pole may be moved, and, second, the local gap formed by a top and bottom pole may also be adjusted for vertical and horizontal field errors. Usually, undulators are assembled with a collection of periodic blocks surveyed to assess their accurate positions. The final process of fine-tuning the undulators requires the magnetic measurements of the whole assembly.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"18 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron Gun-Based Magnetic Probe\",\"authors\":\"S. Bheesette, M. Turqueti\",\"doi\":\"10.1109/NSS/MIC42677.2020.9507871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate magnetic field measurements are fundamental to the construction, testing, and certification of magnetic systems. Often, in high accuracy systems, the measurement technique and its implementation may involve a considerable effort. One such example of this type of system is undulators for light sources. Advanced undulators require several magnetic measurements at different stages during their construction. Every magnet block, composed of several magnetic poles, must be measured individually and sorted based on the magnetic moment results. There are two degrees of freedom for each pole. First, for tuning the vertical field, a pole may be moved, and, second, the local gap formed by a top and bottom pole may also be adjusted for vertical and horizontal field errors. Usually, undulators are assembled with a collection of periodic blocks surveyed to assess their accurate positions. The final process of fine-tuning the undulators requires the magnetic measurements of the whole assembly.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"18 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9507871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的磁场测量是磁性系统的构建、测试和认证的基础。通常,在高精度系统中,测量技术及其实现可能需要相当大的努力。这类系统的一个例子是光源的波动器。先进的波动器在其构造的不同阶段需要多次磁测量。每个磁铁块由几个磁极组成,必须单独测量,并根据磁矩结果进行分类。每个极点有两个自由度。首先,为了调整垂直场,可以移动极,其次,也可以调整由上下极形成的局部间隙,以适应垂直和水平场误差。通常,波动器与测量周期块的集合组装在一起,以评估其准确位置。微调波动器的最后过程需要对整个组件进行磁测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electron Gun-Based Magnetic Probe
Accurate magnetic field measurements are fundamental to the construction, testing, and certification of magnetic systems. Often, in high accuracy systems, the measurement technique and its implementation may involve a considerable effort. One such example of this type of system is undulators for light sources. Advanced undulators require several magnetic measurements at different stages during their construction. Every magnet block, composed of several magnetic poles, must be measured individually and sorted based on the magnetic moment results. There are two degrees of freedom for each pole. First, for tuning the vertical field, a pole may be moved, and, second, the local gap formed by a top and bottom pole may also be adjusted for vertical and horizontal field errors. Usually, undulators are assembled with a collection of periodic blocks surveyed to assess their accurate positions. The final process of fine-tuning the undulators requires the magnetic measurements of the whole assembly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of Dual-Ended Readout PET Detectors Based on SiPMs with Different Microcell Sizes Neural Network-based Inter-crystal Scatter Event Positioning in a PET System Design Based on 3D Position Sensitive Detectors An e-LINAC driven PGNAA system for concealed drug inspection Design of a Multi-Technology Pre-Clinical SPECT System Comprehensive Simulation and Design of 3D Silicon Sensors for Enhanced Timing Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1