根据Köppen-Geiger气候分类系统估算巴西米纳斯吉拉斯州Cwa和Cwb气候区的气温技术

IF 1.2 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Ciencia E Agrotecnologia Pub Date : 2021-06-04 DOI:10.1590/1413-7054202145023920
Pietros André Balbino dos Santos, C. A. U. Monti, L. G. Carvalho, W. S. Lacerda, F. Schwerz
{"title":"根据Köppen-Geiger气候分类系统估算巴西米纳斯吉拉斯州Cwa和Cwb气候区的气温技术","authors":"Pietros André Balbino dos Santos, C. A. U. Monti, L. G. Carvalho, W. S. Lacerda, F. Schwerz","doi":"10.1590/1413-7054202145023920","DOIUrl":null,"url":null,"abstract":"ABSTRACT Air temperature significantly affects the processes involving agricultural and human activities. The knowledge of the temperature of a given location is essential for agricultural planning. It also helps to make decisions regarding human activities. However, it is not always possible to determine this variable. It is necessary to make a precise estimate, using methods that are capable of detecting the existing variations. The aim of this study was to develop models of multiple linear regression (MLR), artificial neural network (ANN), and random forest (RF) to estimate the mean (Tmean), maximum (Tmax), and minimum (Tmin) monthly air temperatures as a function of geographic coordinates and altitude for different localities in Minas Gerais state, Brazil, with climatic classification Cwa or Cwb. The average monthly data (Tmean, Tmax, and Tmin), over a period of 30 years, were collected from 20 climatological stations. The MLR was able to estimate the Tmax with accuracy. However, the predictive capacity of estimating Tmean and Tmin was low. The algorithms RF and ANN were used to estimate Tmean, Tmax, and Tmin with high accuracy. The best results were obtained using the RF model.","PeriodicalId":10188,"journal":{"name":"Ciencia E Agrotecnologia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Air temperature estimation techniques in Minas Gerais state, Brazil, Cwa and Cwb climate regions according to the Köppen-Geiger climate classification system\",\"authors\":\"Pietros André Balbino dos Santos, C. A. U. Monti, L. G. Carvalho, W. S. Lacerda, F. Schwerz\",\"doi\":\"10.1590/1413-7054202145023920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Air temperature significantly affects the processes involving agricultural and human activities. The knowledge of the temperature of a given location is essential for agricultural planning. It also helps to make decisions regarding human activities. However, it is not always possible to determine this variable. It is necessary to make a precise estimate, using methods that are capable of detecting the existing variations. The aim of this study was to develop models of multiple linear regression (MLR), artificial neural network (ANN), and random forest (RF) to estimate the mean (Tmean), maximum (Tmax), and minimum (Tmin) monthly air temperatures as a function of geographic coordinates and altitude for different localities in Minas Gerais state, Brazil, with climatic classification Cwa or Cwb. The average monthly data (Tmean, Tmax, and Tmin), over a period of 30 years, were collected from 20 climatological stations. The MLR was able to estimate the Tmax with accuracy. However, the predictive capacity of estimating Tmean and Tmin was low. The algorithms RF and ANN were used to estimate Tmean, Tmax, and Tmin with high accuracy. The best results were obtained using the RF model.\",\"PeriodicalId\":10188,\"journal\":{\"name\":\"Ciencia E Agrotecnologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencia E Agrotecnologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1413-7054202145023920\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia E Agrotecnologia","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1413-7054202145023920","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

气温对农业和人类活动的过程有显著影响。了解某一地点的温度对农业规划是必不可少的。它还有助于做出有关人类活动的决定。然而,并不总是能够确定这个变量。有必要使用能够检测到现有变化的方法进行精确的估计。本研究的目的是建立多元线性回归(MLR)、人工神经网络(ANN)和随机森林(RF)模型,以估计巴西米纳斯吉拉斯州不同地区的平均气温(Tmean)、最高气温(Tmax)和最低气温(Tmin)随地理坐标和海拔的变化规律,气候分类为Cwa或Cwb。从20个气象站收集了30年的月平均数据(Tmean、Tmax和Tmin)。MLR能够准确地估计Tmax。但对Tmean和Tmin的预测能力较低。采用RF和ANN算法对Tmean、Tmax和Tmin进行了高精度估计。采用射频模型得到了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Air temperature estimation techniques in Minas Gerais state, Brazil, Cwa and Cwb climate regions according to the Köppen-Geiger climate classification system
ABSTRACT Air temperature significantly affects the processes involving agricultural and human activities. The knowledge of the temperature of a given location is essential for agricultural planning. It also helps to make decisions regarding human activities. However, it is not always possible to determine this variable. It is necessary to make a precise estimate, using methods that are capable of detecting the existing variations. The aim of this study was to develop models of multiple linear regression (MLR), artificial neural network (ANN), and random forest (RF) to estimate the mean (Tmean), maximum (Tmax), and minimum (Tmin) monthly air temperatures as a function of geographic coordinates and altitude for different localities in Minas Gerais state, Brazil, with climatic classification Cwa or Cwb. The average monthly data (Tmean, Tmax, and Tmin), over a period of 30 years, were collected from 20 climatological stations. The MLR was able to estimate the Tmax with accuracy. However, the predictive capacity of estimating Tmean and Tmin was low. The algorithms RF and ANN were used to estimate Tmean, Tmax, and Tmin with high accuracy. The best results were obtained using the RF model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ciencia E Agrotecnologia
Ciencia E Agrotecnologia 农林科学-农业综合
CiteScore
2.30
自引率
9.10%
发文量
19
审稿时长
6-12 weeks
期刊介绍: A Ciência e Agrotecnologia, editada a cada 2 meses pela Editora da Universidade Federal de Lavras (UFLA), publica artigos científicos de interesse agropecuário elaborados por membros da comunidade científica nacional e internacional. A revista é distribuída em âmbito nacional e internacional para bibliotecas de Faculdades, Universidades e Instituições de Pesquisa.
期刊最新文献
Molecular characterization of common bean accessions using microsatellite markers Stocking density of red tilapia (Oreochromis sp.) reared in a commercial biofloc system in Colombia Edible coatings with avocado oil on the quality of ‘Tommy Atkins’ mangoes Identification of volatile compounds in salep (Serapias vomeracea) tubers and effects of harvest time and drying method on composition variation Adaptability and stability of mungbean genotypes in the Mid-North of Mato Grosso, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1