地表灌溉最佳平整设计方法的选择

Hassan Ibrahim Mohammed, Shaiban Mohamed Ahmed Mohamed, Omran Musa Abbas, Abdelkarim D. Elfadil
{"title":"地表灌溉最佳平整设计方法的选择","authors":"Hassan Ibrahim Mohammed, Shaiban Mohamed Ahmed Mohamed, Omran Musa Abbas, Abdelkarim D. Elfadil","doi":"10.54392/irjmt2321","DOIUrl":null,"url":null,"abstract":"Land leveling or land grading of surface irrigated fields improve irrigation water distribution and application efficiencies, conserve water and increases crop productivity. Land formation for irrigation face many constraints (ensuring proper slopes, prevention of flood, ensuring canal water command over the field, optimizing earthwork, minimizing truck travel distances, proper equipment utilization). Design engineers traditionally, perform site formation design manually by plane shape, least squire or linear programming methods. Such methods are with different characteristics. The main objective this study is to select and compare performance of these three design methods for proper land leveling design. Consequently, the basic theory of these alternative design methods are reviewed and their performance using data surveyed from five fields in Khartoum North-Sudan, each with different soil surface topographic configurations, is analyzed. The statistical analysis revealed that the linear programming method is the most appropriate design method. Employing the linear programming design method revealed that design slopes in row and cross row directions are within the acceptable range (0.1 to 0.5, the ratio of Cut/fill volumes is within the recommended range (1.1 to 1.3), uniformity of distribution of design elevations of grid points are acceptable and within the target limits (80%), while their deviation is at 80% of grid points around the mean before leveling.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of Optimum Land Leveling Design Method for Surface Irrigation\",\"authors\":\"Hassan Ibrahim Mohammed, Shaiban Mohamed Ahmed Mohamed, Omran Musa Abbas, Abdelkarim D. Elfadil\",\"doi\":\"10.54392/irjmt2321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land leveling or land grading of surface irrigated fields improve irrigation water distribution and application efficiencies, conserve water and increases crop productivity. Land formation for irrigation face many constraints (ensuring proper slopes, prevention of flood, ensuring canal water command over the field, optimizing earthwork, minimizing truck travel distances, proper equipment utilization). Design engineers traditionally, perform site formation design manually by plane shape, least squire or linear programming methods. Such methods are with different characteristics. The main objective this study is to select and compare performance of these three design methods for proper land leveling design. Consequently, the basic theory of these alternative design methods are reviewed and their performance using data surveyed from five fields in Khartoum North-Sudan, each with different soil surface topographic configurations, is analyzed. The statistical analysis revealed that the linear programming method is the most appropriate design method. Employing the linear programming design method revealed that design slopes in row and cross row directions are within the acceptable range (0.1 to 0.5, the ratio of Cut/fill volumes is within the recommended range (1.1 to 1.3), uniformity of distribution of design elevations of grid points are acceptable and within the target limits (80%), while their deviation is at 80% of grid points around the mean before leveling.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt2321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地面灌溉田的土地平整或土地分级改善了灌溉水的分配和施用效率,节约用水并提高了作物生产力。用于灌溉的土地形成面临许多限制(确保适当的坡度,防止洪水,确保运河水对田地的控制,优化土方工程,最小化卡车行驶距离,适当的设备利用率)。传统上,设计工程师通过平面形状、最小乡绅或线性规划方法手动进行场地形状设计。这些方法各有特点。本研究的主要目的是选择和比较这三种设计方法的性能,以进行适当的土地平整设计。因此,回顾了这些备选设计方法的基本理论,并利用在苏丹北部喀土穆的五个不同土壤表面地形配置的田野调查数据,分析了它们的性能。统计分析表明,线性规划法是最合适的设计方法。采用线性规划设计方法发现,排、交叉排方向设计坡度均在可接受范围内(0.1 ~ 0.5),切填比在推荐范围内(1.1 ~ 1.3),格点设计高程分布均匀性均可接受,均在目标范围内(80%),而其偏离在调平前均值附近的格点为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection of Optimum Land Leveling Design Method for Surface Irrigation
Land leveling or land grading of surface irrigated fields improve irrigation water distribution and application efficiencies, conserve water and increases crop productivity. Land formation for irrigation face many constraints (ensuring proper slopes, prevention of flood, ensuring canal water command over the field, optimizing earthwork, minimizing truck travel distances, proper equipment utilization). Design engineers traditionally, perform site formation design manually by plane shape, least squire or linear programming methods. Such methods are with different characteristics. The main objective this study is to select and compare performance of these three design methods for proper land leveling design. Consequently, the basic theory of these alternative design methods are reviewed and their performance using data surveyed from five fields in Khartoum North-Sudan, each with different soil surface topographic configurations, is analyzed. The statistical analysis revealed that the linear programming method is the most appropriate design method. Employing the linear programming design method revealed that design slopes in row and cross row directions are within the acceptable range (0.1 to 0.5, the ratio of Cut/fill volumes is within the recommended range (1.1 to 1.3), uniformity of distribution of design elevations of grid points are acceptable and within the target limits (80%), while their deviation is at 80% of grid points around the mean before leveling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Advancing Fault Detection Efficiency in Wireless Power Transmission with Light GBM for Real-Time Detection Enhancement Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent Evaluation of Structural Stability of Four-Storied building using Non-Destructive Testing Techniques Diagnosis of COVID-19 in X-ray Images using Deep Neural Networks An Ensemble Classification Model to Predict Alzheimer’s Incidence as Multiple Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1