{"title":"在自主网络上演示语音","authors":"Lan Wang, E. Gelenbe","doi":"10.1109/ICAC.2015.14","DOIUrl":null,"url":null,"abstract":"We demonstrate experimentally how an Autonomic Network based on the CPN protocol can provide the Quality of Service (QoS) required by voice communications. The implementation uses Reinforcement Learning to dynamically seek paths that meet the quality requirements of voice communications. Measurements of packet delay, jitter, and loss illustrate the performance obtained from the system.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"27 1","pages":"139-140"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Demonstrating Voice over an Autonomic Network\",\"authors\":\"Lan Wang, E. Gelenbe\",\"doi\":\"10.1109/ICAC.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate experimentally how an Autonomic Network based on the CPN protocol can provide the Quality of Service (QoS) required by voice communications. The implementation uses Reinforcement Learning to dynamically seek paths that meet the quality requirements of voice communications. Measurements of packet delay, jitter, and loss illustrate the performance obtained from the system.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"27 1\",\"pages\":\"139-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We demonstrate experimentally how an Autonomic Network based on the CPN protocol can provide the Quality of Service (QoS) required by voice communications. The implementation uses Reinforcement Learning to dynamically seek paths that meet the quality requirements of voice communications. Measurements of packet delay, jitter, and loss illustrate the performance obtained from the system.