{"title":"多观测器隐马尔可夫模型的可辨识性","authors":"H. Nguyen, M. Roughan","doi":"10.1109/ICASSP.2012.6288268","DOIUrl":null,"url":null,"abstract":"Most large attacks on the Internet are distributed. As a result, such attacks are only partially observed by any one Internet service provider (ISP). Detection would be significantly easier with pooled observations, but privacy concerns often limit the information that providers are willing to share. Multi-party secure distributed computation provides a means for combining observations without compromising privacy. In this paper, we show the benefits of this approach, the most notable of which is that combinations of observations solve identifiability problems in existing approaches for detecting network attacks.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"61 1","pages":"1873-1876"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the identifiability of multi-observer hidden Markov models\",\"authors\":\"H. Nguyen, M. Roughan\",\"doi\":\"10.1109/ICASSP.2012.6288268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most large attacks on the Internet are distributed. As a result, such attacks are only partially observed by any one Internet service provider (ISP). Detection would be significantly easier with pooled observations, but privacy concerns often limit the information that providers are willing to share. Multi-party secure distributed computation provides a means for combining observations without compromising privacy. In this paper, we show the benefits of this approach, the most notable of which is that combinations of observations solve identifiability problems in existing approaches for detecting network attacks.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"61 1\",\"pages\":\"1873-1876\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the identifiability of multi-observer hidden Markov models
Most large attacks on the Internet are distributed. As a result, such attacks are only partially observed by any one Internet service provider (ISP). Detection would be significantly easier with pooled observations, but privacy concerns often limit the information that providers are willing to share. Multi-party secure distributed computation provides a means for combining observations without compromising privacy. In this paper, we show the benefits of this approach, the most notable of which is that combinations of observations solve identifiability problems in existing approaches for detecting network attacks.