Ricardo Mejia-Rodriguez, Miguel Gabriel Villarreal-Cervantes, Josué Nathán Martínez-Castelán, José Saúl Muñoz-Reina, Víctor Manuel Silva-García
{"title":"通过生物启发计算优化串并联混合机器人机械手的动态平衡","authors":"Ricardo Mejia-Rodriguez, Miguel Gabriel Villarreal-Cervantes, Josué Nathán Martínez-Castelán, José Saúl Muñoz-Reina, Víctor Manuel Silva-García","doi":"10.1016/j.jksues.2021.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most challenging robotic manipulator designs is finding an appropriate balance between the shaking force and shaking moment because this reduces vibrations. Several approaches have been introduced in the last decades; nevertheless, some assumptions must be established to make such a balance. In this paper, a dynamic balancing approach is proposed. The main novelty is the no dependence on specific trajectories to be executed by the manipulator, which allows finding a design with a similar tradeoff in the balancing under robot configuration changes. Also, the proposal incorporates mass distribution and link shape in a single design procedure. The proposal is stated as a constrained nonlinear optimization problem and applied to a hybrid serial-parallel robotic manipulator. The use of different bio-inspired algorithms and one gradient one in the solution of the balancing problem reveals that differential evolution finds the most suitable design. Besides, comparative simulation results of the obtained design with other design approaches show that the obtained design presents the most suitable tradeoff between the shaking force and the shaking moment when the manipulator executes tasks with different operating velocities.</p></div>","PeriodicalId":35558,"journal":{"name":"Journal of King Saud University, Engineering Sciences","volume":"36 4","pages":"Pages 265-277"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1018363921001471/pdfft?md5=51d478cab5965be086fbef0ec5d17ff8&pid=1-s2.0-S1018363921001471-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal dynamic balancing of a hybrid serial-parallel robotic manipulator through bio-inspired computing\",\"authors\":\"Ricardo Mejia-Rodriguez, Miguel Gabriel Villarreal-Cervantes, Josué Nathán Martínez-Castelán, José Saúl Muñoz-Reina, Víctor Manuel Silva-García\",\"doi\":\"10.1016/j.jksues.2021.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the most challenging robotic manipulator designs is finding an appropriate balance between the shaking force and shaking moment because this reduces vibrations. Several approaches have been introduced in the last decades; nevertheless, some assumptions must be established to make such a balance. In this paper, a dynamic balancing approach is proposed. The main novelty is the no dependence on specific trajectories to be executed by the manipulator, which allows finding a design with a similar tradeoff in the balancing under robot configuration changes. Also, the proposal incorporates mass distribution and link shape in a single design procedure. The proposal is stated as a constrained nonlinear optimization problem and applied to a hybrid serial-parallel robotic manipulator. The use of different bio-inspired algorithms and one gradient one in the solution of the balancing problem reveals that differential evolution finds the most suitable design. Besides, comparative simulation results of the obtained design with other design approaches show that the obtained design presents the most suitable tradeoff between the shaking force and the shaking moment when the manipulator executes tasks with different operating velocities.</p></div>\",\"PeriodicalId\":35558,\"journal\":{\"name\":\"Journal of King Saud University, Engineering Sciences\",\"volume\":\"36 4\",\"pages\":\"Pages 265-277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1018363921001471/pdfft?md5=51d478cab5965be086fbef0ec5d17ff8&pid=1-s2.0-S1018363921001471-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University, Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1018363921001471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University, Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018363921001471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
Optimal dynamic balancing of a hybrid serial-parallel robotic manipulator through bio-inspired computing
One of the most challenging robotic manipulator designs is finding an appropriate balance between the shaking force and shaking moment because this reduces vibrations. Several approaches have been introduced in the last decades; nevertheless, some assumptions must be established to make such a balance. In this paper, a dynamic balancing approach is proposed. The main novelty is the no dependence on specific trajectories to be executed by the manipulator, which allows finding a design with a similar tradeoff in the balancing under robot configuration changes. Also, the proposal incorporates mass distribution and link shape in a single design procedure. The proposal is stated as a constrained nonlinear optimization problem and applied to a hybrid serial-parallel robotic manipulator. The use of different bio-inspired algorithms and one gradient one in the solution of the balancing problem reveals that differential evolution finds the most suitable design. Besides, comparative simulation results of the obtained design with other design approaches show that the obtained design presents the most suitable tradeoff between the shaking force and the shaking moment when the manipulator executes tasks with different operating velocities.
期刊介绍:
Journal of King Saud University - Engineering Sciences (JKSUES) is a peer-reviewed journal published quarterly. It is hosted and published by Elsevier B.V. on behalf of King Saud University. JKSUES is devoted to a wide range of sub-fields in the Engineering Sciences and JKSUES welcome articles of interdisciplinary nature.