{"title":"舰船主推进系统供电的电化学储能系统可靠性评估","authors":"P. Szewczyk, Andrzej Lebkowski","doi":"10.12716/1001.17.01.08","DOIUrl":null,"url":null,"abstract":": The paper presents the structure of hybrid and electric modern ship propulsion systems. Types and configuration of electrochemical cells for selected electric energy storage facilities on the ship were presented. The method and results of reliability analyses, such as failure mode effect analysis (FMEA), reliability block diagram (RBD) and fault tree analysis (FTA), used to estimate the probability of failure of the energy storage systems supplying the ship's main propulsion, are presented. Methods of evaluation and verification of the proposed reliability model using a laboratory model and available operational and service data are discussed. A proposal for a quantitative risk analysis of potential damage during the operation of the energy storage has been presented.","PeriodicalId":46009,"journal":{"name":"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation","volume":"17 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability Evaluation of Electrochemical Energy Storage Systems Supplying the Ship's Main Propulsion System\",\"authors\":\"P. Szewczyk, Andrzej Lebkowski\",\"doi\":\"10.12716/1001.17.01.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The paper presents the structure of hybrid and electric modern ship propulsion systems. Types and configuration of electrochemical cells for selected electric energy storage facilities on the ship were presented. The method and results of reliability analyses, such as failure mode effect analysis (FMEA), reliability block diagram (RBD) and fault tree analysis (FTA), used to estimate the probability of failure of the energy storage systems supplying the ship's main propulsion, are presented. Methods of evaluation and verification of the proposed reliability model using a laboratory model and available operational and service data are discussed. A proposal for a quantitative risk analysis of potential damage during the operation of the energy storage has been presented.\",\"PeriodicalId\":46009,\"journal\":{\"name\":\"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12716/1001.17.01.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TransNav-International Journal on Marine Navigation and Safety of Sea Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12716/1001.17.01.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Reliability Evaluation of Electrochemical Energy Storage Systems Supplying the Ship's Main Propulsion System
: The paper presents the structure of hybrid and electric modern ship propulsion systems. Types and configuration of electrochemical cells for selected electric energy storage facilities on the ship were presented. The method and results of reliability analyses, such as failure mode effect analysis (FMEA), reliability block diagram (RBD) and fault tree analysis (FTA), used to estimate the probability of failure of the energy storage systems supplying the ship's main propulsion, are presented. Methods of evaluation and verification of the proposed reliability model using a laboratory model and available operational and service data are discussed. A proposal for a quantitative risk analysis of potential damage during the operation of the energy storage has been presented.