研究人类亨廷顿氏病神经干细胞DNA损伤反应的动力学

Julia Dancourt, Morgane Fontaine, C. Néri
{"title":"研究人类亨廷顿氏病神经干细胞DNA损伤反应的动力学","authors":"Julia Dancourt, Morgane Fontaine, C. Néri","doi":"10.1136/jnnp-2018-EHDN.2","DOIUrl":null,"url":null,"abstract":"Although the length of CAG repeat expansion may highly anticorrelates with the age at onset of Huntington disease (HD), genetic modifiers may have a significant impact in HD. One class of modifiers that has recently drawn attention is DNA repair genes. Although some DNA repair genes may be associated with somatic CAG expansion, the involvement of DNA repair genes might reach far beyond that phenomenon, notably in terms of stress response and compensation. HD is marked by neurodegeneration but also has an increasingly studied neurodevelopmental component. Recent advances in stem cells technologies now allow for a comprehensive study of neurodevelopmental processes in vitro, enabling to investigate the role of stress response mechanisms such as DNA repair in the earliest phases of the HD process and test whether DNA damage and repair features established at the time of neuronal differentiation might be conserved in adult neurons. To this end, we study DNA damage and DNA Damage Response (DDR) in human HD stem cells including an isogenic pair of patient-derived Neural Stem Cells (NSCs) and its genetically corrected counterpart differentiated in vitro from induced Pluripotent Stem Cells (iPSCs). To this end, we use markers of DNA damage levels and reporters of DDR pathway activities in response to Single Strand Breaks (SSB) and Double Strand Breaks (DSB). We will present results on the alteration of SSB and DSB responses in human HD NSCs, discussing how understanding the specificities of DDR alterations during neuronal differentiation may shed light on disease mechanisms, seminal effects and potential therapeutic targets.","PeriodicalId":16509,"journal":{"name":"Journal of Neurology, Neurosurgery & Psychiatry","volume":"121 1","pages":"A1 - A1"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A02 Studying the dynamics of DNA damage response in human huntington’s disease neural stem cells\",\"authors\":\"Julia Dancourt, Morgane Fontaine, C. Néri\",\"doi\":\"10.1136/jnnp-2018-EHDN.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the length of CAG repeat expansion may highly anticorrelates with the age at onset of Huntington disease (HD), genetic modifiers may have a significant impact in HD. One class of modifiers that has recently drawn attention is DNA repair genes. Although some DNA repair genes may be associated with somatic CAG expansion, the involvement of DNA repair genes might reach far beyond that phenomenon, notably in terms of stress response and compensation. HD is marked by neurodegeneration but also has an increasingly studied neurodevelopmental component. Recent advances in stem cells technologies now allow for a comprehensive study of neurodevelopmental processes in vitro, enabling to investigate the role of stress response mechanisms such as DNA repair in the earliest phases of the HD process and test whether DNA damage and repair features established at the time of neuronal differentiation might be conserved in adult neurons. To this end, we study DNA damage and DNA Damage Response (DDR) in human HD stem cells including an isogenic pair of patient-derived Neural Stem Cells (NSCs) and its genetically corrected counterpart differentiated in vitro from induced Pluripotent Stem Cells (iPSCs). To this end, we use markers of DNA damage levels and reporters of DDR pathway activities in response to Single Strand Breaks (SSB) and Double Strand Breaks (DSB). We will present results on the alteration of SSB and DSB responses in human HD NSCs, discussing how understanding the specificities of DDR alterations during neuronal differentiation may shed light on disease mechanisms, seminal effects and potential therapeutic targets.\",\"PeriodicalId\":16509,\"journal\":{\"name\":\"Journal of Neurology, Neurosurgery & Psychiatry\",\"volume\":\"121 1\",\"pages\":\"A1 - A1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurology, Neurosurgery & Psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/jnnp-2018-EHDN.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology, Neurosurgery & Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jnnp-2018-EHDN.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然CAG重复扩增的长度可能与亨廷顿病(HD)发病年龄高度反相关,但遗传修饰因子可能对亨廷顿病有显著影响。最近引起人们注意的一类修饰基因是DNA修复基因。虽然一些DNA修复基因可能与体细胞CAG扩增有关,但DNA修复基因的参与可能远远超出这一现象,特别是在应激反应和补偿方面。HD以神经退行性变为特征,但也越来越多地研究神经发育成分。干细胞技术的最新进展现在允许在体外对神经发育过程进行全面的研究,使研究应激反应机制(如DNA修复)在HD过程的早期阶段的作用,并测试在神经元分化时建立的DNA损伤和修复特征是否可能在成年神经元中保守。为此,我们研究了人类HD干细胞的DNA损伤和DNA损伤反应(DDR),包括一对等基因的患者来源的神经干细胞(NSCs)和它的基因校正的对偶细胞,在体外从诱导多能干细胞(iPSCs)分化。为此,我们使用DNA损伤水平标记和DDR通路活性报告来响应单链断裂(SSB)和双链断裂(DSB)。我们将介绍人类HD NSCs中SSB和DSB反应改变的结果,讨论如何理解神经元分化过程中DDR改变的特异性,从而揭示疾病机制、影响和潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A02 Studying the dynamics of DNA damage response in human huntington’s disease neural stem cells
Although the length of CAG repeat expansion may highly anticorrelates with the age at onset of Huntington disease (HD), genetic modifiers may have a significant impact in HD. One class of modifiers that has recently drawn attention is DNA repair genes. Although some DNA repair genes may be associated with somatic CAG expansion, the involvement of DNA repair genes might reach far beyond that phenomenon, notably in terms of stress response and compensation. HD is marked by neurodegeneration but also has an increasingly studied neurodevelopmental component. Recent advances in stem cells technologies now allow for a comprehensive study of neurodevelopmental processes in vitro, enabling to investigate the role of stress response mechanisms such as DNA repair in the earliest phases of the HD process and test whether DNA damage and repair features established at the time of neuronal differentiation might be conserved in adult neurons. To this end, we study DNA damage and DNA Damage Response (DDR) in human HD stem cells including an isogenic pair of patient-derived Neural Stem Cells (NSCs) and its genetically corrected counterpart differentiated in vitro from induced Pluripotent Stem Cells (iPSCs). To this end, we use markers of DNA damage levels and reporters of DDR pathway activities in response to Single Strand Breaks (SSB) and Double Strand Breaks (DSB). We will present results on the alteration of SSB and DSB responses in human HD NSCs, discussing how understanding the specificities of DDR alterations during neuronal differentiation may shed light on disease mechanisms, seminal effects and potential therapeutic targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WED 253 An atypical presentation of sneddon syndrome H29 Practical tools and transfer aids in daily care for clients with advanced hd F06 When and how does manifest hd begin? a comparison of age at onset of motor and non-motor symptoms F33 Task-switching abilities in pre-manifest huntington’s disease subjects F56 Psychiatric symptoms in huntington’s disease: relationship to disease stage in the CAPIT-HD2 beta-testing study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1