基于背包问题的元启发式算法比较研究

Dikscha Sapra, Rashi Sharma, A. Agarwal
{"title":"基于背包问题的元启发式算法比较研究","authors":"Dikscha Sapra, Rashi Sharma, A. Agarwal","doi":"10.1109/CONFLUENCE.2017.7943137","DOIUrl":null,"url":null,"abstract":"This paper aims to discuss and compare various metaheuristic algorithms applied to the “Knapsack Problem”. The Knapsack Problem is a combinatorial optimization maximization problem which requires to find the number of each weighted item to be included in a hypothetical knapsack, so the total weight is less than or equal to the required weight. To come to an optimized solution for such a problem, a variety of algorithms can possibly be used. In this paper, Tabu Search, Scatter Search and Local Search algorithms are compared taking execution time, solution quality and relative difference to best known quality, as metrics to compute the results of this NP-hard problem.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"46 1","pages":"134-137"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Comparative study of metaheuristic algorithms using Knapsack Problem\",\"authors\":\"Dikscha Sapra, Rashi Sharma, A. Agarwal\",\"doi\":\"10.1109/CONFLUENCE.2017.7943137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to discuss and compare various metaheuristic algorithms applied to the “Knapsack Problem”. The Knapsack Problem is a combinatorial optimization maximization problem which requires to find the number of each weighted item to be included in a hypothetical knapsack, so the total weight is less than or equal to the required weight. To come to an optimized solution for such a problem, a variety of algorithms can possibly be used. In this paper, Tabu Search, Scatter Search and Local Search algorithms are compared taking execution time, solution quality and relative difference to best known quality, as metrics to compute the results of this NP-hard problem.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"46 1\",\"pages\":\"134-137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文旨在讨论和比较应用于“背包问题”的各种元启发式算法。背包问题是一个组合优化最大化问题,它要求找到一个假设的背包中包含的每个加权物品的数量,使总重量小于或等于所需重量。为了得到这类问题的最佳解决方案,可以使用多种算法。本文比较了禁忌搜索、分散搜索和局部搜索算法,以执行时间、解质量和与最优已知质量的相对差作为度量来计算这个np困难问题的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study of metaheuristic algorithms using Knapsack Problem
This paper aims to discuss and compare various metaheuristic algorithms applied to the “Knapsack Problem”. The Knapsack Problem is a combinatorial optimization maximization problem which requires to find the number of each weighted item to be included in a hypothetical knapsack, so the total weight is less than or equal to the required weight. To come to an optimized solution for such a problem, a variety of algorithms can possibly be used. In this paper, Tabu Search, Scatter Search and Local Search algorithms are compared taking execution time, solution quality and relative difference to best known quality, as metrics to compute the results of this NP-hard problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1