基于支持向量回归的虚拟机性能建模

S. Doong, Ch Lai, J. S. Lee, Chen S. Ouyang, Chih-Hung Wu
{"title":"基于支持向量回归的虚拟机性能建模","authors":"S. Doong, Ch Lai, J. S. Lee, Chen S. Ouyang, Chih-Hung Wu","doi":"10.5176/2010-2283_1.1.19","DOIUrl":null,"url":null,"abstract":"Virtualization is a key technology in cloud computing to render on-demand provisioning of virtual services. Xen, an open source paravirtualized virtual machine monitor (hypervisor), has been adopted by many leading data centers of the world today. A scheduler in Xen handles CPU resources sharing among virtual machines hosted on the same physical system. This study is focused on a scheduler in the current Xen release - the Credit scheduler. Credit uses two parameters (weight and cap) to fine tune CPU resources sharing. Previous studies have shown that these two parameters can impact various performance measures of virtual machines hosted on Xen. In this study, we present a holistic procedure to establish performance models of virtual machines. Empirical data of two commonly used measures, namely calculation power and network throughput, were collected by simulations under various settings of weight and cap. We then employed a powerful machine learning tool (multi-kernel support vector regression) to learn performance models from the empirical data. These models were evaluated satisfactorily by using established procedures in machine learning.","PeriodicalId":91079,"journal":{"name":"GSTF international journal on computing","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Machines Performance Modeling with Support Vector Regressions\",\"authors\":\"S. Doong, Ch Lai, J. S. Lee, Chen S. Ouyang, Chih-Hung Wu\",\"doi\":\"10.5176/2010-2283_1.1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtualization is a key technology in cloud computing to render on-demand provisioning of virtual services. Xen, an open source paravirtualized virtual machine monitor (hypervisor), has been adopted by many leading data centers of the world today. A scheduler in Xen handles CPU resources sharing among virtual machines hosted on the same physical system. This study is focused on a scheduler in the current Xen release - the Credit scheduler. Credit uses two parameters (weight and cap) to fine tune CPU resources sharing. Previous studies have shown that these two parameters can impact various performance measures of virtual machines hosted on Xen. In this study, we present a holistic procedure to establish performance models of virtual machines. Empirical data of two commonly used measures, namely calculation power and network throughput, were collected by simulations under various settings of weight and cap. We then employed a powerful machine learning tool (multi-kernel support vector regression) to learn performance models from the empirical data. These models were evaluated satisfactorily by using established procedures in machine learning.\",\"PeriodicalId\":91079,\"journal\":{\"name\":\"GSTF international journal on computing\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSTF international journal on computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5176/2010-2283_1.1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5176/2010-2283_1.1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚拟化是云计算中的一项关键技术,用于按需提供虚拟服务。Xen是一种开源的半虚拟化虚拟机监视器(hypervisor),目前已被世界上许多领先的数据中心所采用。Xen中的调度程序处理托管在同一物理系统上的虚拟机之间的CPU资源共享。本研究的重点是当前Xen版本中的一个调度器——Credit调度器。Credit使用两个参数(权重和上限)来微调CPU资源共享。以前的研究表明,这两个参数会影响Xen上托管的虚拟机的各种性能度量。在这项研究中,我们提出了一个整体的过程来建立虚拟机的性能模型。在不同的权重和上限设置下,通过模拟收集计算能力和网络吞吐量这两个常用度量的经验数据。然后,我们使用强大的机器学习工具(多核支持向量回归)从经验数据中学习性能模型。通过使用机器学习中的既定程序对这些模型进行了满意的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual Machines Performance Modeling with Support Vector Regressions
Virtualization is a key technology in cloud computing to render on-demand provisioning of virtual services. Xen, an open source paravirtualized virtual machine monitor (hypervisor), has been adopted by many leading data centers of the world today. A scheduler in Xen handles CPU resources sharing among virtual machines hosted on the same physical system. This study is focused on a scheduler in the current Xen release - the Credit scheduler. Credit uses two parameters (weight and cap) to fine tune CPU resources sharing. Previous studies have shown that these two parameters can impact various performance measures of virtual machines hosted on Xen. In this study, we present a holistic procedure to establish performance models of virtual machines. Empirical data of two commonly used measures, namely calculation power and network throughput, were collected by simulations under various settings of weight and cap. We then employed a powerful machine learning tool (multi-kernel support vector regression) to learn performance models from the empirical data. These models were evaluated satisfactorily by using established procedures in machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cognitive Computing supported Medical Decision Support System for Patient’s Driving Assessment Propaganda Barometer : A Supportive Tool to Improve Media Literacy Towards Building a Critically Thinking Society A framework for the adoption of bring your own device (BYOD) in the hospital environment On developing adaptive vocabulary learning game for children with an early language delay Stroke Cognitive Medical Assistant (StrokeCMA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1