Abhishek Kesharwani, Vaibhav Aggarwal, Shubham Singh, R. B R, Arvind Kumar
{"title":"基于Hausdorff距离和小波变换的VMD方法对海洋地震信号进行降噪","authors":"Abhishek Kesharwani, Vaibhav Aggarwal, Shubham Singh, R. B R, Arvind Kumar","doi":"10.1177/15485129211036044","DOIUrl":null,"url":null,"abstract":"In marine seismic acquisitions, signal interference remains a major menace. In this paper, a denoising approach based on the Variational Mode Decomposition (VMD) combined with the Hausdorff distance (HD) and Wavelet transform (WT) is proposed. There has been substantial research in this field over the years. However, traditional denoising methods fall short of achieving satisfactory results in an extremely low signal to noise ratio (SNR) environment. The feasibility, and stability of the proposed method was validated by performing simulations in MATLAB on both a synthetic signal and a seismic signal generated using real dataset. It was found that the proposed method does well in preserving marine signals in low SNR environments, and has a superior output SNR.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Marine seismic signal denoising using VMD with Hausdorff distance and wavelet transform\",\"authors\":\"Abhishek Kesharwani, Vaibhav Aggarwal, Shubham Singh, R. B R, Arvind Kumar\",\"doi\":\"10.1177/15485129211036044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In marine seismic acquisitions, signal interference remains a major menace. In this paper, a denoising approach based on the Variational Mode Decomposition (VMD) combined with the Hausdorff distance (HD) and Wavelet transform (WT) is proposed. There has been substantial research in this field over the years. However, traditional denoising methods fall short of achieving satisfactory results in an extremely low signal to noise ratio (SNR) environment. The feasibility, and stability of the proposed method was validated by performing simulations in MATLAB on both a synthetic signal and a seismic signal generated using real dataset. It was found that the proposed method does well in preserving marine signals in low SNR environments, and has a superior output SNR.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211036044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211036044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Marine seismic signal denoising using VMD with Hausdorff distance and wavelet transform
In marine seismic acquisitions, signal interference remains a major menace. In this paper, a denoising approach based on the Variational Mode Decomposition (VMD) combined with the Hausdorff distance (HD) and Wavelet transform (WT) is proposed. There has been substantial research in this field over the years. However, traditional denoising methods fall short of achieving satisfactory results in an extremely low signal to noise ratio (SNR) environment. The feasibility, and stability of the proposed method was validated by performing simulations in MATLAB on both a synthetic signal and a seismic signal generated using real dataset. It was found that the proposed method does well in preserving marine signals in low SNR environments, and has a superior output SNR.