{"title":"木材工业中香柏木、总状梭梭和大构造木热降解动力学分析","authors":"C. Cavinato, M. Poletto","doi":"10.4067/S0718-221X2021000100446","DOIUrl":null,"url":null,"abstract":"Thermal analysis is a powerful tool to predict the composition and thermal stability of different materials. In this work, thermogravimetric analysis of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis was carried out at four different heating rates (5 °C·min-1, 10 °C·min-1, 20 °C·min-1 and 40 °C·min-1) in a non-isothermal condition. The degradation kinetics was evaluated based on Flynn-Wall-Ozawa and Criado methods. The half-life time of wood degradation reaction was also studied. The wood thermal degradation process in an oxidizing atmosphere can be divided in dehydration, devolatilization, and combustion. The kinetic results revels apparent activation energy values of 130-240 kJ·mol-1 for Tectona grandis, 150-191 kJ·mol-1 for Marmaroxylon racemosum and 188-205 kJ·mol-1 for Cedrela odorata, when conversion values ranged from 0,1-0,5. The most probable degradation mechanism for wood species studied is a diffusion model based on a three-dimensional diffusion. Cedrela odorata presented the lowest reaction half-life time while Marmaroxylon racemosum showed the highest. On the basis of these results, it can be concluded that Flynn-Wall-Ozawa and Criado methods associated with half-life time of reaction may contribute to better understand the wood degradation before use it in polymer composites.","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinetic analysis of thermal degradation of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis from timber industry\",\"authors\":\"C. Cavinato, M. Poletto\",\"doi\":\"10.4067/S0718-221X2021000100446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal analysis is a powerful tool to predict the composition and thermal stability of different materials. In this work, thermogravimetric analysis of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis was carried out at four different heating rates (5 °C·min-1, 10 °C·min-1, 20 °C·min-1 and 40 °C·min-1) in a non-isothermal condition. The degradation kinetics was evaluated based on Flynn-Wall-Ozawa and Criado methods. The half-life time of wood degradation reaction was also studied. The wood thermal degradation process in an oxidizing atmosphere can be divided in dehydration, devolatilization, and combustion. The kinetic results revels apparent activation energy values of 130-240 kJ·mol-1 for Tectona grandis, 150-191 kJ·mol-1 for Marmaroxylon racemosum and 188-205 kJ·mol-1 for Cedrela odorata, when conversion values ranged from 0,1-0,5. The most probable degradation mechanism for wood species studied is a diffusion model based on a three-dimensional diffusion. Cedrela odorata presented the lowest reaction half-life time while Marmaroxylon racemosum showed the highest. On the basis of these results, it can be concluded that Flynn-Wall-Ozawa and Criado methods associated with half-life time of reaction may contribute to better understand the wood degradation before use it in polymer composites.\",\"PeriodicalId\":18092,\"journal\":{\"name\":\"Maderas-ciencia Y Tecnologia\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maderas-ciencia Y Tecnologia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4067/S0718-221X2021000100446\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/S0718-221X2021000100446","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Kinetic analysis of thermal degradation of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis from timber industry
Thermal analysis is a powerful tool to predict the composition and thermal stability of different materials. In this work, thermogravimetric analysis of Cedrela odorata, Marmaroxylon racemosum and Tectona grandis was carried out at four different heating rates (5 °C·min-1, 10 °C·min-1, 20 °C·min-1 and 40 °C·min-1) in a non-isothermal condition. The degradation kinetics was evaluated based on Flynn-Wall-Ozawa and Criado methods. The half-life time of wood degradation reaction was also studied. The wood thermal degradation process in an oxidizing atmosphere can be divided in dehydration, devolatilization, and combustion. The kinetic results revels apparent activation energy values of 130-240 kJ·mol-1 for Tectona grandis, 150-191 kJ·mol-1 for Marmaroxylon racemosum and 188-205 kJ·mol-1 for Cedrela odorata, when conversion values ranged from 0,1-0,5. The most probable degradation mechanism for wood species studied is a diffusion model based on a three-dimensional diffusion. Cedrela odorata presented the lowest reaction half-life time while Marmaroxylon racemosum showed the highest. On the basis of these results, it can be concluded that Flynn-Wall-Ozawa and Criado methods associated with half-life time of reaction may contribute to better understand the wood degradation before use it in polymer composites.
期刊介绍:
Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.