异步束内多电极刺激的自适应参数选择

M. A. Frankel, G. Clark, S. Meek, R. Normann, V. J. Mathews
{"title":"异步束内多电极刺激的自适应参数选择","authors":"M. A. Frankel, G. Clark, S. Meek, R. Normann, V. J. Mathews","doi":"10.1109/ICASSP.2012.6287993","DOIUrl":null,"url":null,"abstract":"This paper describes an adaptive algorithm for selecting perelectrode stimulus intensities and inter-electrode stimulation phasing to achieve desired isometric plantar-flexion forces via asynchronous, intrafascicular multi-electrode stimulation. The algorithm employed a linear model of force production and a gradient descent approach for updating the parameters of the model. The adaptively selected model stimulation parameters were validated in experiments in which stimulation was delivered via a Utah Slanted Electrode Array that was acutely implanted in the sciatic nerve of an anesthetized feline. In simulations and experiments, desired steps in force were evoked, and exhibited short time-to-peak (<; 0.5 s), low overshoot (<; 10%), low steady-state error (<; 4%), and low steady-state ripple (<; 12%), with rapid convergence of stimulation parameters. For periodic desired forces, the algorithm was able to quickly converge and experimental trials showed low amplitude error (mean error <; 10% of maximum force), and short time delay (<; 250 ms).","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1","pages":"753-756"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive parameter selection for asynchronous intrafascicular multi-electrode stimulation\",\"authors\":\"M. A. Frankel, G. Clark, S. Meek, R. Normann, V. J. Mathews\",\"doi\":\"10.1109/ICASSP.2012.6287993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an adaptive algorithm for selecting perelectrode stimulus intensities and inter-electrode stimulation phasing to achieve desired isometric plantar-flexion forces via asynchronous, intrafascicular multi-electrode stimulation. The algorithm employed a linear model of force production and a gradient descent approach for updating the parameters of the model. The adaptively selected model stimulation parameters were validated in experiments in which stimulation was delivered via a Utah Slanted Electrode Array that was acutely implanted in the sciatic nerve of an anesthetized feline. In simulations and experiments, desired steps in force were evoked, and exhibited short time-to-peak (<; 0.5 s), low overshoot (<; 10%), low steady-state error (<; 4%), and low steady-state ripple (<; 12%), with rapid convergence of stimulation parameters. For periodic desired forces, the algorithm was able to quickly converge and experimental trials showed low amplitude error (mean error <; 10% of maximum force), and short time delay (<; 250 ms).\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"13 1\",\"pages\":\"753-756\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6287993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6287993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种自适应算法,用于选择过电极刺激强度和电极间刺激相位,以通过异步、束状内多电极刺激获得所需的等距跖屈曲力。该算法采用力产生的线性模型,采用梯度下降法对模型参数进行更新。通过将犹他州倾斜电极阵列急性植入麻醉猫坐骨神经的实验,验证了自适应选择的模型刺激参数。在模拟和实验中,期望的力度步骤被唤起,并表现出短的峰值时间(<;0.5 s),低超调(<;10%),低稳态误差(<;4%),低稳态纹波(<;12%),增产参数快速收敛。对于周期性期望力,该算法收敛速度快,实验结果显示幅值误差小(平均误差<;最大力的10%),时间延迟短(<;250 ms)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive parameter selection for asynchronous intrafascicular multi-electrode stimulation
This paper describes an adaptive algorithm for selecting perelectrode stimulus intensities and inter-electrode stimulation phasing to achieve desired isometric plantar-flexion forces via asynchronous, intrafascicular multi-electrode stimulation. The algorithm employed a linear model of force production and a gradient descent approach for updating the parameters of the model. The adaptively selected model stimulation parameters were validated in experiments in which stimulation was delivered via a Utah Slanted Electrode Array that was acutely implanted in the sciatic nerve of an anesthetized feline. In simulations and experiments, desired steps in force were evoked, and exhibited short time-to-peak (<; 0.5 s), low overshoot (<; 10%), low steady-state error (<; 4%), and low steady-state ripple (<; 12%), with rapid convergence of stimulation parameters. For periodic desired forces, the algorithm was able to quickly converge and experimental trials showed low amplitude error (mean error <; 10% of maximum force), and short time delay (<; 250 ms).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1