一种局部与全局动态联合粒子群优化算法

Kai-Wen Zheng, Hsiao-Fan Wang
{"title":"一种局部与全局动态联合粒子群优化算法","authors":"Kai-Wen Zheng, Hsiao-Fan Wang","doi":"10.6186/IJIMS.2014.25.1.1","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) algorithm has been developed extensively and many results have been reported. PSO algorithm has shown some important advantage by providing high speed of convergence in specific problems, but it has a tendency to be trapped in a near optimal solution and difficult in improving the accuracy by fine tuning. This paper proposes a dynamic local and global conjoint particle swarm optimization (DLGCPSO and DCPSO in short) algorithm of which all particles dynamically share the best information of the local, global and the group particles. It is tested with a set of eight benchmark functions with different parameters in comparison to PSO. Experimental results indicate that the DCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness in solving optimization problems.","PeriodicalId":39953,"journal":{"name":"International Journal of Information and Management Sciences","volume":"25 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Dynamic Local and Global Conjoint Particle Swarm Optimization Algorithm\",\"authors\":\"Kai-Wen Zheng, Hsiao-Fan Wang\",\"doi\":\"10.6186/IJIMS.2014.25.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) algorithm has been developed extensively and many results have been reported. PSO algorithm has shown some important advantage by providing high speed of convergence in specific problems, but it has a tendency to be trapped in a near optimal solution and difficult in improving the accuracy by fine tuning. This paper proposes a dynamic local and global conjoint particle swarm optimization (DLGCPSO and DCPSO in short) algorithm of which all particles dynamically share the best information of the local, global and the group particles. It is tested with a set of eight benchmark functions with different parameters in comparison to PSO. Experimental results indicate that the DCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness in solving optimization problems.\",\"PeriodicalId\":39953,\"journal\":{\"name\":\"International Journal of Information and Management Sciences\",\"volume\":\"25 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6186/IJIMS.2014.25.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6186/IJIMS.2014.25.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

粒子群优化(PSO)算法得到了广泛的发展,并取得了许多成果。粒子群算法在特定问题上具有较快的收敛速度,显示出一些重要的优势,但它容易陷入近最优解,难以通过微调来提高精度。本文提出了一种动态局部和全局联合粒子群优化算法(DLGCPSO和DCPSO),该算法使所有粒子动态共享局部、全局和群粒子的最佳信息。用8个不同参数的基准函数进行测试,并与粒子群算法进行比较。实验结果表明,DCPSO算法显著提高了对基准函数的搜索性能,显示了求解优化问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dynamic Local and Global Conjoint Particle Swarm Optimization Algorithm
Particle swarm optimization (PSO) algorithm has been developed extensively and many results have been reported. PSO algorithm has shown some important advantage by providing high speed of convergence in specific problems, but it has a tendency to be trapped in a near optimal solution and difficult in improving the accuracy by fine tuning. This paper proposes a dynamic local and global conjoint particle swarm optimization (DLGCPSO and DCPSO in short) algorithm of which all particles dynamically share the best information of the local, global and the group particles. It is tested with a set of eight benchmark functions with different parameters in comparison to PSO. Experimental results indicate that the DCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness in solving optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information and Management Sciences
International Journal of Information and Management Sciences Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
0
期刊介绍: - Information Management - Management Sciences - Operation Research - Decision Theory - System Theory - Statistics - Business Administration - Finance - Numerical computations - Statistical simulations - Decision support system - Expert system - Knowledge-based systems - Artificial intelligence
期刊最新文献
Live-Streaming Consumer Experience; the Future of E-commerce and Digital Marketing in Africa: Evidence from China Entrepreneur’s Human Capital and Business Model Innovation: The Meditation Role of Access to Start-Up Resources Skills and Competences for Utilization of Web Storage Technology (WST) Platform for Academic Activities by Faculty Members in Faculty of Education, Ahmadu Bello University, Zaria Adopting a Pragmatic Approach to Rural Information Systems and Services Delivery for Sustainable Community Development in Nigeria Fire Safety Management in High Rise Buildings of Lahore, Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1